Yao, Y., Liu, N., McDowell, M. T., Pasta, M. & Cui, Y. Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy Environ. Sci. 5, 7927–7930 (2012).
Rage, B., Delbegue, D., Louvain, N. & Lippens, P.-E. Engineering of silicon core–shell structures for Li-ion anodes. Chemistry 27, 16275–16290 (2021).
Jeschull, F. et al. Electrochemistry and morphology of graphite negative electrodes containing silicon as capacity-enhancing electrode additive. Electrochim. Acta 320, 134602 (2019).
Müller, J., Michalowski, P. & Kwade, A. Impact of silicon content and particle size in lithium-ion battery anodes on particulate properties and electrochemical performance. Batteries 9, 377 (2023).
Han, H., Huang, Z. & Lee, W. Metal-assisted chemical etching of silicon and nanotechnology applications. Nano Today 9, 271–304 (2014).
Entwistle, J., Rennie, A. & Patwardhan, S. A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond. J. Mater. Chem. A 6, 18344–18356 (2018).
Xu, T. et al. Stabilizing Si/graphite composites with Cu and in situ synthesized carbon nanotubes for high-performance Li-ion battery anodes. Inorg. Chem. Front. 5, 1463–1469 (2018).
Taiwo, O. O. et al. Investigation of cycling-induced microstructural degradation in silicon-based electrodes in lithium-ion batteries using X-ray nanotomography. Electrochim. Acta 253, 85–92 (2017).
Liu, W. et al. The effect of carbon coating on graphite@nano-Si composite as anode materials for Li-ion batteries. J. Solid State Electrochem. 23, 3363–3372 (2019).
Kim, J. et al. Unveiling the role of electrode-level heterogeneity alleviated in a silicon-graphite electrode under operando microscopy. Energy Storage Mater. 57, 269–276 (2023).
Pietsch, P. et al. Quantifying microstructural dynamics and electrochemical activity of graphite and silicon-graphite lithium ion battery anodes. Nat. Commun. 7, 12909 (2016).
Luo, L., Wu, J., Luo, J., Huang, J. & Dravid, V. P. Dynamics of electrochemical lithiation/delithiation of graphene-encapsulated silicon nanoparticles studied by in-situ TEM. Sci. Rep. 4, 3863 (2014).
Xu, Z.-L. et al. Study of lithiation mechanisms of high performance carbon-coated Si anodes by in-situ microscopy. Energy Storage Mater. 3, 45–54 (2016).
Qi, W. et al. Improving the rate capability of a SiOx/graphite anode by adding LiNO3. Prog. Nat. Sci. Mater. Int. 30, 321–327 (2020).
Zhao, X. et al. Revealing the role of poly(vinylidene fluoride) binder in Si/graphite composite anode for Li-ion batteries. ACS Omega 3, 11684–11690 (2018).
Huang, Q., Loveridge, M. J., Genieser, R., Lain, M. J. & Bhagat, R. Electrochemical evaluation and phase-related impedance studies on silicon–few layer graphene (FLG) composite electrode systems. Sci. Rep. 8, 1386 (2018).
Shen, C. et al. In situ and ex situ TEM study of lithiation behaviours of porous silicon nanostructures. Sci. Rep. 6, 31334 (2016).
Xu, Z.-L. et al. Carbon-coated mesoporous silicon microsphere anodes with greatly reduced volume expansion. J. Mater. Chem. A 4, 6098–6106 (2016).
Prado, A. Y. R., Rodrigues, M.-T. F., Trask, S. E., Shaw, L. & Abraham, D. P. Electrochemical dilatometry of si-bearing electrodes: dimensional changes and experiment design. J. Electrochem. Soc. 167, 160551 (2020).
Han, G. et al. A review on various optical fibre sensing methods for batteries. Renew. Sustain. Energy Rev. 150, 111514 (2021).
Buljac, A. et al. Digital volume correlation: review of progress and challenges. Exp. Mech. 58, 661–708 (2018).
Bay, B. K., Smith, T. S., Fyhrie, D. P. & Saad, M. Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp. Mech. 39, 217–226 (1999).
Pietsch, P., Hess, M., Ludwig, W., Eller, J. & Wood, V. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries. Sci. Rep. 6, 27994 (2016).
Valisammagari, A. et al. Study of microstructural evolution and strain analysis in SiOx/C negative electrodes using in-situ X-ray tomography and digital volume correlation. Batteries Supercaps 8, e202400416 (2025).
Wetjen, M. et al. Differentiating the degradation phenomena in silicon-graphite electrodes for lithium-ion batteries. J. Electrochem. Soc. 164, A2840 (2017).
Chan, C. K., Ruffo, R., Hong, S. S., Huggins, R. A. & Cui, Y. Structural and electrochemical study of the reaction of lithium with silicon nanowires. J. Power Sources 189, 34–39 (2009).
Dimov, N., Fukuda, K., Umeno, T., Kugino, S. & Yoshio, M. Characterization of carbon-coated silicon: structural evolution and possible limitations. J. Power Sources 114, 88–95 (2003).
Liu, W.-R. et al. Electrochemical characterizations on Si and C-coated Si particle electrodes for lithium-ion batteries. J. Electrochem. Soc. 152, A1719 (2005).
Guo, J., Sun, A., Chen, X., Wang, C. & Manivannan, A. Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy. Electrochim. Acta 56, 3981–3987 (2011).
Wang, X., Zhu, J., Dai, H., Yu, C. & Wei, X. Impedance investigation of silicon/graphite anode during cycling. Batteries 9, 242 (2023).
Harrington, D. A. & van den Driessche, P. Mechanism and equivalent circuits in electrochemical impedance spectroscopy. Electrochim. Acta 56, 8005–8013 (2011).
Lai, W. & Haile, S. M. Impedance spectroscopy as a tool for chemical and electrochemical analysis of mixed conductors: a case study of Ceria. J. Am. Ceram. Soc. 88, 2979–2997 (2005).
Clematis, D. et al. On the stabilization and extension of the distribution of relaxation times analysis. Electrochim. Acta 391, 138916 (2021).
Wan, T. H., Saccoccio, M., Chen, C. & Ciucci, F. Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim. Acta 184, 483–499 (2015).
Bertei, A. et al. Validation of a physically-based solid oxide fuel cell anode model combining 3D tomography and impedance spectroscopy. Int. J. Hydrog. Energy 41, 22381–22393 (2016).
Pan, K., Zou, F., Canova, M., Zhu, Y. & Kim, J.-H. Comprehensive electrochemical impedance spectroscopy study of Si-Based anodes using distribution of relaxation times analysis. J. Power Sources 479, 229083 (2020).
Moyassari, E. et al. The role of silicon in silicon-graphite composite electrodes regarding specific capacity, cycle stability, and expansion. J. Electrochem. Soc. 169, 010504 (2022).
Yoon, D.-H., Marinaro, M., Axmann, P. & Wohlfahrt-Mehrens, M. Study of the binder influence on expansion/contraction behavior of silicon alloy negative electrodes for lithium-ion batteries. J. Electrochem. Soc. 167, 160537 (2020).
Moon, J. et al. Interplay between electrochemical reactions and mechanical responses in silicon–graphite anodes and its impact on degradation. Nat. Commun. 12, 2714 (2021).
Finegan, D. P. et al. Spatially resolving lithiation in silicon–graphite composite electrodes via in situ high-energy X-ray diffraction computed tomography. Nano Lett. 19, 3811–3820 (2019).
Yao, K. P. C., Okasinski, J. S., Kalaga, K., Almer, J. D. & Abraham, D. P. Operando quantification of (de)lithiation behavior of silicon–graphite blended electrodes for lithium-ion batteries. Adv. Energy Mater. 9, 1803380 (2019).
Cholewinski, A., Si, P., Uceda, M., Pope, M. & Zhao, B. Polymer binders: characterization and development toward aqueous electrode fabrication for sustainability. Polymers 13, 631 (2021).
Peña Fernández, M., Barber, A. H., Blunn, G. W. & Tozzi, G. Optimization of digital volume correlation computation in SR-microCT images of trabecular bone and bone-biomaterial systems. J. Microsc. 272, 213–228 (2018).
Lu, X. et al. Multiscale dynamics of charging and plating in graphite electrodes coupling operando microscopy and phase-field modelling. Nat. Commun. 14, 5127 (2023).
Frith, J. T., Lacey, M. J. & Ulissi, U. A non-academic perspective on the future of lithium-based batteries. Nat. Commun. 14, 420 (2023).
Scurtu, R.-G. et al. From small batteries to big claims. Nat. Nanotechnol. 20, 970–976 (2025).
Kornilov, A., Safonov, I. & Yakimchuk, I. A review of watershed implementations for segmentation of volumetric images. J. Imaging 8, 127 (2022).
Hasanpour, S., Hoorfar, M. & Phillion, A. Characterization of transport phenomena in porous transport layers using X-ray microtomography. J. Power Sources 353, 221–229 (2017).
