Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Navigating the labyrinth of forks

    July 18, 2025

    OpenAI unveils ‘ChatGPT agent’ that gives ChatGPT its own computer to autonomously use your email and web apps, download and create files for you

    July 18, 2025

    Big milestone for the future of quantum computing.

    July 18, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»On-demand formation of Lewis bases for efficient and stable perovskite solar cells
    Nanotechnology

    On-demand formation of Lewis bases for efficient and stable perovskite solar cells

    big tee tech hubBy big tee tech hubApril 17, 2025007 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    On-demand formation of Lewis bases for efficient and stable perovskite solar cells
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hui, W. et al. Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science 371, 1359–1364 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, H. et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384, 189–193 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, X. et al. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375, 434–437 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Q. et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, R. et al. Reduction of bulk and surface defects in inverted methylammonium- and bromide-free formamidinium perovskite solar cells. Nat. Energy 8, 839–849 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hou, T. et al. Methylammonium‐free ink for low‐temperature crystallization of α‐FAPbI3 perovskite. Adv. Energy Mater. 14, 2400932 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Jeong, J. et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, M. et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3, 2179–2192 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Niu, T. et al. Phase-pure α-FAPbI3 perovskite solar cells via activating lead-iodine frameworks. Adv. Mater. 36, e2309171 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Chao, L. et al. Direct and stable α-phase formation via ionic liquid solvation for formamidinium-based perovskite solar cells. Joule 6, 2203–2217 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, C., Cheng, Y. B. & Ge, Z. Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chem. Soc. Rev. 49, 1653–1687 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Castro-Mendez, A. F. et al. Tailoring interface energies via phosphonic acids to grow and stabilize cubic FAPbI3 deposited by thermal evaporation. J. Am. Chem. Soc. 14, 18459–18469 (2024).

    Article 

    Google Scholar
     

  • Sidhik, S. et al. Two-dimensional perovskite templates for durable, efficient formamidinium perovskite solar cells. Science 384, 1227–1235 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai, Y. et al. Initializing film homogeneity to retard phase segregation for stable perovskite solar cells. Science 378, 747–754 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, Z. et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 624, 557–563 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, H. et al. Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photon. 16, 352–358 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, S. et al. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373, 902–907 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bu, T. et al. Lead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science 372, 1327–1332 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, H. et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 370, eabb8985 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Z. et al. Reducing energy barrier of δ-to-α phase transition for printed formamidinium lead iodide photovoltaic devices. Nano Energy 91, 106658 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Huang, X. et al. Solvent gaming chemistry to control the quality of halide perovskite thin films for photovoltaics. ACS Cent. Sci. 8, 1008–1016 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Z. et al. Anion-π interactions suppress phase impurities in FAPbI3 solar cells. Nature 623, 531–537 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, N. et al. Tailoring crystallization dynamics of CsPbI3 for scalable production of efficient inorganic perovskite solar cells. Adv. Funct. Mater. 34, 2309894 (2023).

    Article 

    Google Scholar
     

  • Xu, J. et al. Anion optimization for bifunctional surface passivation in perovskite solar cells. Nat. Mater. 22, 1507–1514 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, C. et al. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science 379, 690–694 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, S. et al. Efficient passivation with lead pyridine‐2‐carboxylic for high‐performance and stable perovskite solar cells. Adv. Energy Mater. 9, 1901852 (2019).

    Article 

    Google Scholar
     

  • Azmi, R. et al. Double-side 2-dimensional/3-dimensional heterojunctions for inverted perovskite solar cells. Nature 628, 93–98 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, W. et al. Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 379, 683–690 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, S. et al. Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380, 404–409 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, M. et al. Ammonium cations with high pKa in perovskite solar cells for improved high-temperature photostability. Nat. Energy 8, 1229–1239 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Du, X. et al. Synergistic crystallization and passivation by a single molecular additive for high-performance perovskite solar cells. Adv. Mater. 34, e2204098 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zheng, Y. et al. Dual‐interface modification for inverted methylammonium‐free perovskite solar cells of 25.35% efficiency with balanced crystallization. Adv. Energy Mater. 14, 2304486 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Chen, T. et al. Entropy-driven structural transition and kinetic trapping in formamidinium lead iodide perovskite. Sci. Adv. 2, e1601650 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, H. S. et al. Vacuum-assisted reforming cathode interlayer orientation for efficient and stable perovskite solar cells. Nano Energy 125, 109584 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Chen, P. et al. Multifunctional ytterbium oxide buffer for perovskite solar cells. Nature 625, 516–522 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan, T. et al. Chiral-structured heterointerfaces enable durable perovskite solar cells. Science 384, 878–884 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416–420 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, M., Fei, C., Uddin, M. A. & Huang, J. Influence of voids on the thermal and light stability of perovskite solar cells. Sci. Adv. 8, eabo5977 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, S. et al. Suppressed deprotonation enables a durable buried interface in tin-lead perovskite for all-perovskite tandem solar cells. Joule 8, 2220–2237 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, L. et al. Solid additive delicately controls morphology formation and enables high‐performance in organic solar cells. Adv. Funct. Mater. 33, 202305450 (2023).

    Article 

    Google Scholar
     

  • Park, J. et al. Triadic halobenzene processing additive combined advantages of both solvent and solid types for efficient and stable organic solar cells. Small 20, e2405415 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • He, R. et al. Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature 618, 80–86 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, X. et al. Backbone engineering enables highly efficient polymer hole-transporting materials for inverted perovskite solar cells. Adv. Mater. 35, e2208431 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, W. et al. Unlocking voltage potentials of mixed‐halide perovskite solar cells via phase segregation suppression. Adv. Funct. Mater. 32, 2110698 (2021).

    Article 

    Google Scholar
     

  • Liang, C. et al. Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films. Nat. Energy 6, 38–45 (2020).

    Article 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Eficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimme, S. et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    bases cells efficient Formation Lewis Ondemand perovskite Solar stable
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Exploring supersymmetry through twisted bilayer materials – Physics World

    July 18, 2025

    Dispersions Hold the Key for Carbon Nanotube Success, Finds IDTechEx

    July 17, 2025

    Material strength and toughness simultaneously achieved through layer twisting

    July 16, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Navigating the labyrinth of forks

    July 18, 2025

    OpenAI unveils ‘ChatGPT agent’ that gives ChatGPT its own computer to autonomously use your email and web apps, download and create files for you

    July 18, 2025

    Big milestone for the future of quantum computing.

    July 18, 2025

    Exploring supersymmetry through twisted bilayer materials – Physics World

    July 18, 2025
    Advertisement
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Navigating the labyrinth of forks

    July 18, 2025

    OpenAI unveils ‘ChatGPT agent’ that gives ChatGPT its own computer to autonomously use your email and web apps, download and create files for you

    July 18, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.