Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    How to Hire Offshore Software Developers

    November 17, 2025

    Amazon is seeking to raise about $12B through a bond sale, its first such deal in US dollars since 2022, to help fund acquisitions, capex, and more (Bloomberg)

    November 17, 2025

    Why Puppy Yoga Is the New Wellness Fix for Busy Americans

    November 17, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Full-length protein classification via cysteine fingerprinting in solid-state nanopores
    Nanotechnology

    Full-length protein classification via cysteine fingerprinting in solid-state nanopores

    big tee tech hubBy big tee tech hubSeptember 29, 2025008 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Full-length protein classification via cysteine fingerprinting in solid-state nanopores
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Singh, A. Towards resolving proteomes in single cells. Nat. Methods 18, 856 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bennett, H. M., Stephenson, W., Rose, C. M. & Darmanis, S. Single-cell proteomics enabled by next-generation sequencing or mass spectrometry. Nat. Methods 20, 363–374 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • MacCoss, M. J. et al. Sampling the proteome by emerging single-molecule and mass spectrometry methods. Nat. Methods 20, 339–346 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alfaro, J. A. et al. The emerging landscape of single-molecule protein sequencing technologies. Nat. Methods 18, 604–617 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ouldali, H. et al. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat. Biotechnol. 38, 176–181 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yusko, E. C. et al. Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nat. Nanotechnol. 12, 360–367 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, J. et al. Protein nanopore reveals the renin–angiotensin system crosstalk with single-amino-acid resolution. Nat. Chem. 15, 578–586 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin-Baniandres, P. et al. Enzyme-less nanopore detection of post-translational modifications within long polypeptides. Nat. Nanotechnol. 18, 1335–1340 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reed, B. D. et al. Real-time dynamic single-molecule protein sequencing on an integrated semiconductor device. Science 378, 186–192 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swaminathan, J. et al. Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures. Nat. Biotechnol. 36, 1076–1091 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. Multiple rereads of single proteins at single-amino acid resolution using nanopores. Science 374, 1509–1513 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohayon, S. et al. Full‐length single protein molecules tracking and counting in thin silicon channels. Adv. Mater. 36, 2314319 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Filius, M. et al. Full-length single-molecule protein fingerprinting. Nat. Nanotechnol. 5, 652–659 (2024).

    Article 

    Google Scholar
     

  • Wang, K. et al. Unambiguous discrimination of all 20 proteinogenic amino acids and their modifications by nanopore. Nat. Methods 21, 92–101 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, M. et al. Real-time detection of 20 amino acids and discrimination of pathologically relevant peptides with functionalized nanopore. Nat. Methods 21, 609–618 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, L. et al. Unidirectional single-file transport of full-length proteins through a nanopore. Nat. Biotechnol. 41, 1130–1139 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soni, N., Freundlich, N., Ohayon, S., Huttner, D. & Meller, A. Single-file translocation dynamics of SDS-denatured, whole proteins through sub-5 nm solid-state nanopores. ACS Nano 16, 11405–11414 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sauciuc, A., Morozzo della Rocca, B., Tadema, M. J., Chinappi, M. & Maglia, G. Translocation of linearized full-length proteins through an engineered nanopore under opposing electrophoretic force. Nat. Biotechnol. 42, 1275–1281 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Restrepo-Pérez, L., John, S., Aksimentiev, A., Joo, C. & Dekker, C. SDS-assisted protein transport through solid-state nanopores. Nanoscale 9, 11685–11693 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Motone, K. et al. Multi-pass, single-molecule nanopore reading of long protein strands. Nature 633, 662–669 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sauciuc, A. & Maglia, G. Controlled translocation of proteins through a biological nanopore for single-protein fingerprint identification. Nano. Lett. 24, 14118–14124 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qing, Y., Ionescu, S. A., Pulcu, G. S. & Bayley, H. Directional control of a processive molecular hopper. Science 361, 908–912 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thakur, M. et al. Wafer-scale fabrication of nanopore devices for single-molecule DNA biosensing using MoS2. Small Methods 4, 2000072 (2020).

    Article 
    CAS 

    Google Scholar
     

  • De Vreede, L. J. et al. Wafer-scale fabrication of fused silica chips for low-noise recording of resistive pulses through nanopores. Nanotechnology 30, 265301 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Leitao, S. M. et al. Spatially multiplexed single-molecule translocations through a nanopore at controlled speeds. Nat. Nanotechnol. 18, 1078–1084 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, H., Zhou, Q., Wang, W., Fang, F. & Zhang, J. Solid-state nanopore array: manufacturing and applications. Small 19, 2205680 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kim, M. J., Wanunu, M., Bell, D. C. & Meller, A. Rapid fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA analysis. Adv. Mater. 18, 3149–3153 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, Z., Lei, X. & Wang, C. Controllable fabrication of solid state nanopores array by electron beam shrinking. Int. J. Mach. Tools Manuf. 159, 103623 (2020).

    Article 

    Google Scholar
     

  • Verschueren, D. V., Yang, W. & Dekker, C. Lithography-based fabrication of nanopore arrays in freestanding SiN and graphene membranes. Nanotechnology 29, 145302 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dela Torre, R., Larkin, J., Singer, A. & Meller, A. Fabrication and characterization of solid-state nanopore arrays for high-throughput DNA sequencing. Nanotechnology 23, 385308 (2012).

    Article 
    PubMed Central 

    Google Scholar
     

  • Zvuloni, E., Zrehen, A., Gilboa, T. & Meller, A. Fast and deterministic fabrication of sub-5 nanometer solid-state pores by feedback-controlled laser processing. ACS Nano 15, 12189–12200 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giannopoulos, I., Mochi, I., Vockenhuber, M., Ekinci, Y. & Kazazis, D. Extreme ultraviolet lithography reaches 5 nm resolution. Nanoscale 16, 15533–15543 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wanunu, M., Sutin, J., McNally, B., Chow, A. & Meller, A. DNA translocation governed by interactions with solid-state nanopores. Biophys. J. 95, 4716–4725 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soni, N., Chandra Verma, N., Talor, N. & Meller, A. Over 30-fold enhancement in DNA translocation dynamics through nanoscale pores coated with an anionic surfactant. Nano Lett. 23, 4609–4616 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wells, D. B., Abramkina, V. & Aksimentiev, A. Exploring transmembrane transport through α-hemolysin with grid-steered molecular dynamics. J. Chem. Phys. 127, 125101 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Kowalczyk, S. W., Grosberg, A. Y., Rabin, Y. & Dekker, C. Modeling the conductance and DNA blockade of solid-state nanopores. Nanotechnology 22, 315101 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Mohapatra, S., Teherpuria, H., Mogurampelly, S., Downton, M. & Kannam, S. K. Ionic flow through partially blocked nanopores. Phys. Chem. Chem. Phys. 26, 26911–26920 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sadasivan, H., Stiffler, D., Tirumala, A., Israeli, J. & Narayanasamy, S. Accelerated dynamic time warping on GPU for selective nanopore sequencing. J. Biotechnol. Biomed. 07, 137–148 (2024).

    Article 

    Google Scholar
     

  • Chesnokov, M. S. et al. Shift in VEGFA isoform balance towards more angiogenic variants is associated with tumor stage and differentiation of human hepatocellular carcinoma. PeerJ 2018, e4915 (2018).

    Article 

    Google Scholar
     

  • Wanunu, M., Morrison, W., Rabin, Y., Grosberg, A. Y. & Meller, A. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat. Nanotechnol. 5, 160–165 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Comer, J., Dimitrov, V., Zhao, Q., Timp, G. & Aksimentiev, A. Microscopic mechanics of hairpin DNA translocation through synthetic nanopores. Biophys. J. 96, 593–608 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zrehen, A., Gilboa, T. & Meller, A. Real-time visualization and sub-diffraction limit localization of nanometer-scale pore formation by dielectric breakdown. Nanoscale 9, 16437–16445 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, J. & Mackerell, A. D. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J. Comput. Chem. 34, 2135–2145 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoo, J. & Aksimentiev, A. New tricks for old dogs: improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions. Phys. Chem. Chem. Phys. 20, 8432–8449 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Miyamoto, S. & Kollman, P. A. SETTLE: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13, 952–962 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Andersen, H. C. RATTLE: a ‘velocity’ version of the SHAKE algorithm for molecular dynamics calculations. J. Comput. Phys. 52, 24–34 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Martyna, G. J., Tobias, D. J. & Klein, M. L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101, 4177–4189 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Aksimentiev, A. & Schulten, K. Imaging α-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys. J. 88, 3745–3761 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Permyakov, E. A. & Berliner, L. J. α-Lactalbumin: structure and function. FEBS Lett. 473, 269–274 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vanommeslaeghe, K., Raman, E. P. & MacKerell, A. D. Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J. Chem. Inf. Model 52, 3155–3168 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmid, S., Stömmer, P., Dietz, H. & Dekker, C. Nanopore electro-osmotic trap for the label-free study of single proteins and their conformations. Nat. Nanotechnol. 16, 1244–1250 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soni, N., Verma, N. C. & Meller, A. Full-length protein classification via cysteine fingerprinting in solid-state nanopores: source data and codes. Zenodo (2025).



  • Source link

    classification cysteine fingerprinting Fulllength nanopores Protein solidstate
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    ZnO Nanoparticles with 2 % Silver: A Game-Changer for Sensing

    November 17, 2025

    Light-powered micromotors can move through air

    November 16, 2025

    Single-atom Ca nanozyme induces glioma death through Ca2+-overload-enhanced catalytic tumor nanotherapy, ferroptosis and synergistic remodeling of the immune microenvironment | Journal of Nanobiotechnology

    November 15, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    How to Hire Offshore Software Developers

    November 17, 2025

    Amazon is seeking to raise about $12B through a bond sale, its first such deal in US dollars since 2022, to help fund acquisitions, capex, and more (Bloomberg)

    November 17, 2025

    Why Puppy Yoga Is the New Wellness Fix for Busy Americans

    November 17, 2025

    How to Navigate Cloud Migration Complexity: FAQs and Best Practices

    November 17, 2025
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    How to Hire Offshore Software Developers

    November 17, 2025

    Amazon is seeking to raise about $12B through a bond sale, its first such deal in US dollars since 2022, to help fund acquisitions, capex, and more (Bloomberg)

    November 17, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.