Singh, A. Towards resolving proteomes in single cells. Nat. Methods 18, 856 (2021).
Bennett, H. M., Stephenson, W., Rose, C. M. & Darmanis, S. Single-cell proteomics enabled by next-generation sequencing or mass spectrometry. Nat. Methods 20, 363–374 (2023).
MacCoss, M. J. et al. Sampling the proteome by emerging single-molecule and mass spectrometry methods. Nat. Methods 20, 339–346 (2023).
Alfaro, J. A. et al. The emerging landscape of single-molecule protein sequencing technologies. Nat. Methods 18, 604–617 (2021).
Ouldali, H. et al. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat. Biotechnol. 38, 176–181 (2020).
Yusko, E. C. et al. Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nat. Nanotechnol. 12, 360–367 (2017).
Jiang, J. et al. Protein nanopore reveals the renin–angiotensin system crosstalk with single-amino-acid resolution. Nat. Chem. 15, 578–586 (2023).
Martin-Baniandres, P. et al. Enzyme-less nanopore detection of post-translational modifications within long polypeptides. Nat. Nanotechnol. 18, 1335–1340 (2023).
Reed, B. D. et al. Real-time dynamic single-molecule protein sequencing on an integrated semiconductor device. Science 378, 186–192 (2022).
Swaminathan, J. et al. Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures. Nat. Biotechnol. 36, 1076–1091 (2018).
Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. Multiple rereads of single proteins at single-amino acid resolution using nanopores. Science 374, 1509–1513 (2021).
Ohayon, S. et al. Full‐length single protein molecules tracking and counting in thin silicon channels. Adv. Mater. 36, 2314319 (2024).
Filius, M. et al. Full-length single-molecule protein fingerprinting. Nat. Nanotechnol. 5, 652–659 (2024).
Wang, K. et al. Unambiguous discrimination of all 20 proteinogenic amino acids and their modifications by nanopore. Nat. Methods 21, 92–101 (2023).
Zhang, M. et al. Real-time detection of 20 amino acids and discrimination of pathologically relevant peptides with functionalized nanopore. Nat. Methods 21, 609–618 (2024).
Yu, L. et al. Unidirectional single-file transport of full-length proteins through a nanopore. Nat. Biotechnol. 41, 1130–1139 (2023).
Soni, N., Freundlich, N., Ohayon, S., Huttner, D. & Meller, A. Single-file translocation dynamics of SDS-denatured, whole proteins through sub-5 nm solid-state nanopores. ACS Nano 16, 11405–11414 (2022).
Sauciuc, A., Morozzo della Rocca, B., Tadema, M. J., Chinappi, M. & Maglia, G. Translocation of linearized full-length proteins through an engineered nanopore under opposing electrophoretic force. Nat. Biotechnol. 42, 1275–1281 (2023).
Restrepo-Pérez, L., John, S., Aksimentiev, A., Joo, C. & Dekker, C. SDS-assisted protein transport through solid-state nanopores. Nanoscale 9, 11685–11693 (2017).
Motone, K. et al. Multi-pass, single-molecule nanopore reading of long protein strands. Nature 633, 662–669 (2024).
Sauciuc, A. & Maglia, G. Controlled translocation of proteins through a biological nanopore for single-protein fingerprint identification. Nano. Lett. 24, 14118–14124 (2024).
Qing, Y., Ionescu, S. A., Pulcu, G. S. & Bayley, H. Directional control of a processive molecular hopper. Science 361, 908–912 (2018).
Thakur, M. et al. Wafer-scale fabrication of nanopore devices for single-molecule DNA biosensing using MoS2. Small Methods 4, 2000072 (2020).
De Vreede, L. J. et al. Wafer-scale fabrication of fused silica chips for low-noise recording of resistive pulses through nanopores. Nanotechnology 30, 265301 (2019).
Leitao, S. M. et al. Spatially multiplexed single-molecule translocations through a nanopore at controlled speeds. Nat. Nanotechnol. 18, 1078–1084 (2023).
Liu, H., Zhou, Q., Wang, W., Fang, F. & Zhang, J. Solid-state nanopore array: manufacturing and applications. Small 19, 2205680 (2023).
Kim, M. J., Wanunu, M., Bell, D. C. & Meller, A. Rapid fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA analysis. Adv. Mater. 18, 3149–3153 (2006).
Yuan, Z., Lei, X. & Wang, C. Controllable fabrication of solid state nanopores array by electron beam shrinking. Int. J. Mach. Tools Manuf. 159, 103623 (2020).
Verschueren, D. V., Yang, W. & Dekker, C. Lithography-based fabrication of nanopore arrays in freestanding SiN and graphene membranes. Nanotechnology 29, 145302 (2018).
Dela Torre, R., Larkin, J., Singer, A. & Meller, A. Fabrication and characterization of solid-state nanopore arrays for high-throughput DNA sequencing. Nanotechnology 23, 385308 (2012).
Zvuloni, E., Zrehen, A., Gilboa, T. & Meller, A. Fast and deterministic fabrication of sub-5 nanometer solid-state pores by feedback-controlled laser processing. ACS Nano 15, 12189–12200 (2021).
Giannopoulos, I., Mochi, I., Vockenhuber, M., Ekinci, Y. & Kazazis, D. Extreme ultraviolet lithography reaches 5 nm resolution. Nanoscale 16, 15533–15543 (2024).
Wanunu, M., Sutin, J., McNally, B., Chow, A. & Meller, A. DNA translocation governed by interactions with solid-state nanopores. Biophys. J. 95, 4716–4725 (2008).
Soni, N., Chandra Verma, N., Talor, N. & Meller, A. Over 30-fold enhancement in DNA translocation dynamics through nanoscale pores coated with an anionic surfactant. Nano Lett. 23, 4609–4616 (2023).
Wells, D. B., Abramkina, V. & Aksimentiev, A. Exploring transmembrane transport through α-hemolysin with grid-steered molecular dynamics. J. Chem. Phys. 127, 125101 (2007).
Kowalczyk, S. W., Grosberg, A. Y., Rabin, Y. & Dekker, C. Modeling the conductance and DNA blockade of solid-state nanopores. Nanotechnology 22, 315101 (2011).
Mohapatra, S., Teherpuria, H., Mogurampelly, S., Downton, M. & Kannam, S. K. Ionic flow through partially blocked nanopores. Phys. Chem. Chem. Phys. 26, 26911–26920 (2024).
Sadasivan, H., Stiffler, D., Tirumala, A., Israeli, J. & Narayanasamy, S. Accelerated dynamic time warping on GPU for selective nanopore sequencing. J. Biotechnol. Biomed. 07, 137–148 (2024).
Chesnokov, M. S. et al. Shift in VEGFA isoform balance towards more angiogenic variants is associated with tumor stage and differentiation of human hepatocellular carcinoma. PeerJ 2018, e4915 (2018).
Wanunu, M., Morrison, W., Rabin, Y., Grosberg, A. Y. & Meller, A. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat. Nanotechnol. 5, 160–165 (2010).
Comer, J., Dimitrov, V., Zhao, Q., Timp, G. & Aksimentiev, A. Microscopic mechanics of hairpin DNA translocation through synthetic nanopores. Biophys. J. 96, 593–608 (2009).
Zrehen, A., Gilboa, T. & Meller, A. Real-time visualization and sub-diffraction limit localization of nanometer-scale pore formation by dielectric breakdown. Nanoscale 9, 16437–16445 (2017).
Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020).
Huang, J. & Mackerell, A. D. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J. Comput. Chem. 34, 2135–2145 (2013).
Yoo, J. & Aksimentiev, A. New tricks for old dogs: improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions. Phys. Chem. Chem. Phys. 20, 8432–8449 (2018).
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).
Miyamoto, S. & Kollman, P. A. SETTLE: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13, 952–962 (1992).
Andersen, H. C. RATTLE: a ‘velocity’ version of the SHAKE algorithm for molecular dynamics calculations. J. Comput. Phys. 52, 24–34 (1983).
Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).
Martyna, G. J., Tobias, D. J. & Klein, M. L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101, 4177–4189 (1994).
Aksimentiev, A. & Schulten, K. Imaging α-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys. J. 88, 3745–3761 (2005).
Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).
Permyakov, E. A. & Berliner, L. J. α-Lactalbumin: structure and function. FEBS Lett. 473, 269–274 (2000).
Vanommeslaeghe, K., Raman, E. P. & MacKerell, A. D. Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J. Chem. Inf. Model 52, 3155–3168 (2012).
Schmid, S., Stömmer, P., Dietz, H. & Dekker, C. Nanopore electro-osmotic trap for the label-free study of single proteins and their conformations. Nat. Nanotechnol. 16, 1244–1250 (2021).
Soni, N., Verma, N. C. & Meller, A. Full-length protein classification via cysteine fingerprinting in solid-state nanopores: source data and codes. Zenodo (2025).
