Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Guiding Organizations in Their AI Journey

    November 11, 2025

    Chinese Buses, European Fears, and the Truth About Connected Fleets

    November 11, 2025

    Google’s Plan to Fix a Broken System

    November 11, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Nanotechnology-driven biofortification of Fe, Zn, and Se in edible plants | Journal of Nanobiotechnology
    Nanotechnology

    Nanotechnology-driven biofortification of Fe, Zn, and Se in edible plants | Journal of Nanobiotechnology

    big tee tech hubBy big tee tech hubOctober 15, 202501244 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Nanotechnology-driven biofortification of Fe, Zn, and Se in edible plants | Journal of Nanobiotechnology
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Koç E, Karayiğit B. Assessment of biofortification approaches used to improve micronutrient-dense plants that are a sustainable solution to combat hidden hunger. J Soil Sci Plant Nutr. 2022;22:475–500.

    Article 
    PubMed 

    Google Scholar
     

  • Banerjee S, Roy P, Nandi S, Roy S. Advanced biotechnological strategies towards the development of crops with enhanced micronutrient content. Plant Growth Regul. 2023;100:355–71.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lowe NM. The global challenge of hidden hunger: perspectives from the field. Proc Nutr Soc. 2021;80:283–9.

    Article 
    PubMed 

    Google Scholar
     

  • Avnee SS, Chaudhary DR, Jhorar P, Rana RS. Biofortification: an approach to eradicate micronutrient deficiency. Front Nutr. 2023;10:1233070.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Van Der Straeten D, Bhullar NK, De Steur H, Gruissem W, MacKenzie D, Pfeiffer W, et al. Multiplying the efficiency and impact of biofortification through metabolic engineering. Nat Commun. 2020;11:5203.

    Article 
    PubMed 

    Google Scholar
     

  • Zulfiqar U, Khokhar A, Maqsood MF, Shahbaz M, Naz N, Sara M, et al. Genetic biofortification: advancing crop nutrition to tackle hidden hunger. Funct Integr Genomics. 2024;24:34.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Monika G, Melanie Kim SR, Kumar PS, Gayathri KV, Rangasamy G, Saravanan A. Biofortification: a long-term solution to improve global health – a review. Chemosphere. 2023;314:137713.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hendrix S, Verbruggen N, Cuypers A, Meyer AJ. Essential trace metals in plant responses to heat stress. J Exp Bot. 2022;73:1775–88.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hernandez-Apaolaza L. Priming with silicon: a review of a promising tool to improve micronutrient deficiency symptoms. Front Plant Sci. 2022;13:840770.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kathi S, Laza H, Singh S, Thompson L, Li W, Simpson C. A decade of improving nutritional quality of horticultural crops agronomically (2012–2022): a systematic literature review. Sci Total Environ. 2024;911:168665.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Debnath S, Dey A, Khanam R, Saha S, Sarkar D, Saha JK, et al. Historical shifting in grain mineral density of landmark rice and wheat cultivars released over the past 50 years in India. Sci Rep. 2023;13:21164.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ekele JU, Webster R, Perez de Heredia F, Lane KE, Fadel A, Symonds RC. Current impacts of elevated CO2 on crop nutritional quality: a review using wheat as a case study. Stress Biol. 2025;5:34.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bhardwaj RL, Parashar A, Parewa HP, Vyas L. An alarming decline in the nutritional quality of foods: the biggest challenge for future generations’ health. Foods. 2024;13:877.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yilmaz H, Yilmaz A. Hidden hunger in the age of abundance: the nutritional pitfalls of modern staple crops. Food Sci Nutr. 2025;13:e4610.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • World Health Organization (WHO). Micronutrient deficiencies. 2020. Available at: https://www.who.int/health-topics/micronutrients#tab=tab_1. Accessed 21 August 2025.

  • Bailey RL, West KP Jr, Black RE. The epidemiology of global micronutrient deficiencies. Ann Nutr Metab. 2015;66:22–33.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • FAO, IFAD, UNICEF, WFP, WHO. The state of food security and nutrition in the world 2021. 2021. Available at: Accessed 21 August 2025. https://doi.org/10.4060/cb4474en

  • EFSA NDA Panel. Scientific opinion on dietary reference values for selenium. EFSA J. 2014;12:3846.

    Article 

    Google Scholar
     

  • Mishra P, Mishra J, Arora NK. Biofortification revisited: addressing the role of beneficial soil microbes for enhancing trace elements concentration in staple crops. Microbiol Res. 2023;275:127442.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kapoor P, Dhaka RK, Sihag P, Mehla S, Sagwal V, Singh Y, et al. Nanotechnology-enabled biofortification strategies for micronutrients enrichment of food crops: current understanding and future scope. NanoImpact. 2022;26:100407.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dwivedi SL, Garcia-Oliveira AL, Govindaraj M, Ortiz R. Biofortification to avoid malnutrition in humans in a changing climate: enhancing micronutrient bioavailability in seed, tuber, and storage roots. Front Plant Sci. 2023;14:1119148.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Martin C, Fernie A. Biofortification’s contribution to mitigating micronutrient deficiencies. Nat Food. 2024;5:19–27.

    Article 
    PubMed 

    Google Scholar
     

  • Dhaliwal SS, Sharma V, Shukla AK, Verma V, Kaur M, Shivay YS, et al. Biofortification – a frontier novel approach to enrich micronutrients in field crops to encounter the nutritional security. Molecules. 2022;27:1340.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Vaidya S, Deng C, Wang Y, Zuverza-Mena N, Dimkpa C, White JC. Nanotechnology in agriculture: a solution to global food insecurity in a changing climate? NanoImpact. 2024;34:100502.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Banerjee A, Roychoudhury A. Explicating the cross-talks between nanoparticles, signaling pathways and nutrient homeostasis during environmental stresses and xenobiotic toxicity for sustainable cultivation of cereals. Chemosphere. 2022;286:131827.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kaur H, Hussain SJ, Mir RA, Verma VC, Naik B, Kumar P, et al. Nanofertilizers–emerging smart fertilizers for modern and sustainable agriculture. Biocatal Agric Biotechnol. 2023;54:102921.

    Article 
    CAS 

    Google Scholar
     

  • Prasad R, Bhattacharyya A, Nguyen QD. Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol. 2017;8:1014.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mikkelsen R. Nanofertilizer and nanotechnology: a quick look. Better Crops. 2018;102:18–9.

    Article 

    Google Scholar
     

  • Mejias JH, Salazar F, Perez Amaro L, Hube S, Rodriguez M, Alfaro M. Nanofertilizers: a cutting-edge approach to increase nitrogen use efficiency in grasslands. Front Environ Sci. 2021;9:635114.

    Article 

    Google Scholar
     

  • Yadav A, Yadav K, Abd-Elsalam KA. Exploring the potential of nanofertilizers for a sustainable agriculture. Plant Nano Biology. 2023;5:100044.

    Article 

    Google Scholar
     

  • Meghana KT, Wahiduzzaman MD, Vamsi G. Nanofertilizers in agriculture. Acta Sci Agric. 2021;5:35–46.

    Article 

    Google Scholar
     

  • Yadav K, Abd-Elsalam KA. Nanofertilizers: types, delivery and advantages in agricultural sustainability. Agrochemicals. 2023;2:296–336.

    Article 

    Google Scholar
     

  • Khan M, Siddiqui ZA, Parveen A, Khan AA, Moon IS, Alam M. Elucidating the role of silicon dioxide and titanium dioxide nanoparticles in mitigating the disease of the eggplant caused by Phomopsis vexans, Ralstonia solanacearum, and root-knot nematode Meloidogyne incognita. Nanotechnol Rev. 2022b;11:1606–19.

    Article 
    CAS 

    Google Scholar
     

  • Prakash V, Rai P, Sharma NC, Singh VP, Tripathi DK, Sharma S, et al. Application of zinc oxide nanoparticles as fertilizer boosts growth in rice plant and alleviates chromium stress by regulating genes involved in oxidative stress. Chemosphere. 2022;303:134554.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Upadhyay PK, Singh VK, Rajanna GA, Dwivedi BS, Dey A, Singh RK, et al. Unveiling the combined effect of nano fertilizers and conventional fertilizers on crop productivity, profitability and soil well-being. Front Sustain Food Syst. 2023;7:1260178.

    Article 

    Google Scholar
     

  • Wang X, Xie H, Wang P, Yin H. Nanoparticles in plants: uptake, transport and physiological activity in leaf and root. Materials. 2023;16:3097.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sembada AA, Lenggoro IW. Transport of nanoparticles into plants and their detection methods. Nanomaterials. 2024;14:131.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kim SH, Bae S, Sung YW, Hwang YS. Effects of particle size on toxicity, bioaccumulation, and translocation of zinc oxide nanoparticles to Bok Choy (Brassica chinensis L.) in garden soil. Ecotoxicol Environ Saf. 2024;280:116519.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tuga B, O’Keefe T, Deng C, Ligocki AT, White JC, Haynes CL. Designing nanoparticles for sustainable agricultural applications. Trends Chem. 2023;5:814–26.

    Article 

    Google Scholar
     

  • Cheung HY, Yip S, Han N, Dong G, Fang M, Yang ZX, et al. Modulating electrical properties of InAs nanowires via molecular monolayers. ACS Nano. 2015;9:7545–52.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Khan Y, Sadia H, Ali Shah SZ, Khan MN, Shah AA, Ullah N, et al. Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: a review. Catalysts. 2022d;12:1386.

    Article 
    CAS 

    Google Scholar
     

  • Devan RS, Patil RA, Lin JH, Ma YR. One-dimensional metal-oxide nanostructures: recent developments in synthesis, characterization, and applications. Adv Funct Mater. 2012;22:3326–70.

    Article 
    CAS 

    Google Scholar
     

  • Kashyap AS, Manzar N, Vishwakarma SK, Mahajan C, Dey U. Tiny but mighty: metal nanoparticles as effective antimicrobial agents for plant pathogen control. World J Microbiol Biotechnol. 2024;40:104.

    Article 
    PubMed 

    Google Scholar
     

  • Sharma B, Tiwari S, Kumawat KC, Cardinale M. Nano-biofertilizers as bio-emerging strategies for sustainable agriculture development: potentiality and their limitations. Sci Total Environ. 2023;860:160476.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Naz MY, Sulaiman SA. Slow release coating remedy for nitrogen loss from conventional urea: a review. J Contr Release. 2016;225:109–20.

    Article 
    CAS 

    Google Scholar
     

  • Davidson DW, Verma MS, Gu FX. Controlled root targeted delivery of fertilizer using an ionically crosslinked carboxymethyl cellulose hydrogel matrix. Springerplus. 2013;2:318.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sipponen MH, Rojas OJ, Pihlajaniemi V, Lintinen K, Osterberg M. Calcium chelation of lignin from pulping spent liquor for water-resistant slow-release urea fertilizer systems. ACS Sustain Chem Eng. 2017;5:1054–61.

    Article 
    CAS 

    Google Scholar
     

  • Khalid U, Sher F, Noreen S, Lima EC, Rasheed T, Sehar S, et al. Comparative effects of conventional and nano-enabled fertilizers on morphological and physiological attributes of Caesalpinia bonducella plants. J Saudi Soc Agric Sci. 2022;21:61–72.

    Article 

    Google Scholar
     

  • Jian Y, Gong D, Wang Z, Liu L, He J, Han X, et al. How plants manage pathogen infection. EMBO Rep. 2023;25:31–44.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumari A, Rana V, Yadav SK, Kumar V. Nanotechnology as a powerful tool in plant sciences: recent developments, challenges and perspectives. Plant Nano Biology. 2023;5:100046.

    Article 

    Google Scholar
     

  • Mahmoud M, Swaefy H. Comparison between effect of commercial and nano NPK in presence of nano zeolite on sage plant yield and components under drought stress. Zagazig J Agric Res. 2020;47:435–57.

    Article 

    Google Scholar
     

  • Avellan A, Yun J, Morais BP, Clement ET, Rodrigues SM, Lowry GV. Critical review: role of inorganic nanoparticle properties on their foliar uptake and in planta translocation. Environ Sci Technol. 2021;55:13417–31.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lowry GV, Avellan A, Gilbertson LM. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat Nanotechnol. 2019;14:517–22.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhu J, Li J, Shen Y, Liu S, Zeng N, Zhan X, et al. Mechanism of zinc oxide nanoparticle entry into wheat seedling leaves. Environ Sci Nano. 2020;7:3901–13.

    Article 
    CAS 

    Google Scholar
     

  • Lowry GV, Giraldo JP, Steinmetz NF, Avellan A, Demirer GS, Ristroph KD, et al. Towards realizing nano-enabled precision delivery in plants. Nat Nanotechnol. 2024;19:1255–69.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lv J, Christie P, Zhang S. Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environ Sci: Nano. 2019;6:41–59.

    CAS 

    Google Scholar
     

  • Bombo AB, Pereira AES, Lusa MG, De Medeiros Oliveira E, De Oliveira JL, Campos EVR, et al. A mechanistic view of interactions of a nanoherbicide with target organism. J Agric Food Chem. 2019;67:4453–62.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang Z, Yue L, Dhankher OP, Xing B. Nano-enabled improvements of growth and nutritional quality in food plants driven by rhizosphere processes. Environ Int. 2020;142:105831.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li R, Zhang R, Li Y, Liu C, Wang P, Sun H, et al. Foliar uptake and distribution of metallic oxide nanoparticles in maize (Zea Mays L.) leaf. Environ Sci Technol. 2024. https://doi.org/10.1021/acs.est.4c00991

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo S, Hu X, Wang Z, Yu F, Hou X, Xing B. Zinc oxide nanoparticles cooperate with the phyllosphere to promote grain yield and nutritional quality of rice under heatwave stress. Proc Natl Acad Sci U S A. 2024;121:e2414822121.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Khan I, Awan SA, Rizwan M, Hassan ZU, Akram MA, Tariq R, et al. Nanoparticle’s uptake and translocation mechanisms in plants via seed priming, foliar treatment, and root exposure: a review. Environ Sci Pollut Res. 2022;29:89823–33.

    Article 
    CAS 

    Google Scholar
     

  • Silva MDGC, Medeiros AO, Converti A, Almeida FCG, Sarubbo LA. Biosurfactants: promising biomolecules for agricultural applications. Sustainability. 2024;16:449.

    Article 
    CAS 

    Google Scholar
     

  • Laughton S, Laycock A, Von Der Kammer F, Hofmann T, Casman EA, Rodrigues SM, et al. Persistence of copper-based nanoparticle-containing foliar sprays in Lactuca sativa (lettuce) characterized by spicp-ms. J Nanopart Res. 2019;21:174.

    Article 

    Google Scholar
     

  • Yu M, Yao J, Liang J, Zeng Z, Cui B, Zhao X, et al. Development of functionalized abamectin poly(lactic acid) nanoparticles with regulatable adhesion to enhance foliar retention. RSC Adv. 2017;7:11271–80.

    Article 
    CAS 

    Google Scholar
     

  • Guo J, Tardy BL, Christofferson AJ, Dai Y, Richardson JJ, Zhu W, et al. Modular assembly of superstructures from polyphenol-functionalized building blocks. Nat Nanotechnol. 2016;11:1105–11.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jeon S, Zhang Y, Castillo C, Nava V, Ristroph K, Therrien B, et al. Targeted delivery of sucrose-coated nanocarriers with chemical cargoes to the plant vasculature enhances long‐distance translocation. Small. 2024;20:2304588.

    Article 
    CAS 

    Google Scholar
     

  • Wang Z, Yue L, Dhankher OP, Xing B. Nano-enabled improvements of growth and nutritional quality in food plants driven by rhizosphere processes. Environ Int. 2020;142:105831.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Karny A, Zinger A, Kajal A, Shainsky-Roitman J, Schroeder A. Therapeutic nanoparticles penetrate leaves and deliver nutrients to agricultural crops. Sci Rep. 2018;8:7589.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajput VD, Kumari A, Upadhyay SK, Minkina T, Mandzhieva S, Ranjan A, et al. Can Nanomaterials Improve Soil Microbiome Crop productivity? Agric. 2023;13:231.

    CAS 

    Google Scholar
     

  • Desmau M, Carboni A, Le Bars M, Doelsch E, Benedetti MF, Auffan M, et al. How microbial biofilms control the environmental fate of engineered nanoparticles? Front Environ Sci. 2020;8:82.

    Article 

    Google Scholar
     

  • Islam S. Toxicity and transport of nanoparticles in agriculture: effects of size, coating, and aging. Front Nanotechnol. 2025;7:1622228.

    Article 

    Google Scholar
     

  • Avellan A, Schwab F, Masion A, Chaurand P, Borschneck D, Vidal V, et al. Nanoparticle uptake in plants: gold nanomaterial localized in roots of Arabidopsis thaliana by x-ray computed nanotomography and hyperspectral imaging. Environ Sci Technol. 2017;51:8682–91.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gao M, Chang J, Wang Z, Zhang H, Wang T. Advances in transport and toxicity of nanoparticles in plants. J Nanobiotechnol. 2023;21:75.

    Article 
    CAS 

    Google Scholar
     

  • Lv J, Zhang S, Luo L, Zhang J, Yang K, Christie P. Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environ Sci-Nano. 2015;2:68–77.

    Article 
    CAS 

    Google Scholar
     

  • Ma C, White JC, Zhao J, Zhao Q, Xing B. Uptake of engineered nanoparticles by food crops: characterization, mechanisms, and implications. Annu Rev Food Sci Technol. 2018;9:129–53.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Layet C, Auffan M, Santaella C, Chevassus-Rosset C, Montes M, Ortet P, et al. Evidence that soil properties and organic coating drive the phytoavailability of cerium oxide nanoparticles. Environ Sci Technol. 2017;51:9756–64.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yaichi GZ, Hassanpouraghdam MB, Rasouli F, Aazami MA, Vojodi Mehrabani L, Jabbari SF, et al. Zinc oxide nanoparticles foliar use and arbuscular mycorrhiza inoculation retrieved salinity tolerance in Dracocephalum Moldavica L. by modulating growth responses and essential oil constituents. Sci Rep. 2025;15:492.

    Article 

    Google Scholar
     

  • Zulfiqar U, Ayub A, Hussain S, Ahmad M, Rehman A, Ishfaq M, et al. Iron biofortification in cereal crops: recent progress and prospects. Food Energy Secur. 2024;13:e547.

    Article 
    CAS 

    Google Scholar
     

  • Hong J, Wang C, Wagner DC, Gardea-Torresdey JL, He F, Rico CM. Foliar application of nanoparticles: mechanisms of absorption, transfer, and multiple impacts. Environ Sci Nano. 2021;8:1196–210.

    Article 
    CAS 

    Google Scholar
     

  • Salehi H, Chehregani A, Lucini L, Majd A, Gholami M. Morphological, proteomic and metabolomic insight into the effect of cerium dioxide nanoparticles to Phaseolus vulgaris L. under soil or foliar application. Sci Total Environ. 2018;616–617:1540–51.

    Article 
    PubMed 

    Google Scholar
     

  • Ahmad A, Javad S, Iqbal S, Shahid T, Naz S, Shah AA, et al. Efficacy of soil drench and foliar application of iron nanoparticles on the growth and physiology of Solanum lycopersicum L. exposed to cadmium stress. Sci Rep. 2024;14:27920.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dhaliwal SS, Sharma V, Shukla AK, Verma V, Behera SK, Singh P, et al. Comparative efficiency of mineral, chelated and nano forms of zinc and iron for improvement of zinc and iron in chickpea (Cicer arietinum L.) through biofortification. Agronomy. 2021;11:2436.

    Article 
    CAS 

    Google Scholar
     

  • Pereira AES, Oliveira HC, Fraceto LF, Santaella C. Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials. 2021;11:267.

    Article 

    Google Scholar
     

  • Chen K, Arora R. Priming memory invokes seed stress-tolerance. Environ Exp Bot. 2013;94:33–45.

    Article 
    CAS 

    Google Scholar
     

  • Yang L, Zhang L, Zhang Q, Wei J, Zhao X, Zheng Z, et al. Nanopriming boost seed vigor: deeper insights into the effect mechanism. Plant Physiol Biochem. 2024;214:108895.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zulfiqar F. Effect of seed priming on horticultural crops. Sci Hortic. 2021;286:110197.

    Article 
    CAS 

    Google Scholar
     

  • Nile SH, Thiruvengadam M, Wang Y, Samynathan R, Shariati MA, Rebezov M, et al. Nano-priming as emerging seed priming technology for sustainable agriculture – recent developments and future perspectives. J Nanobiotechnol. 2022;20:254.

    Article 
    CAS 

    Google Scholar
     

  • Xu Y, Liu R, Sui N, Shi W, Wang L, Tian C, et al. Changes in endogenous hormones and seed-coat phenolics during seed storage of two Suaeda Salsa populations. Aust J Bot. 2016;64:325.

    Article 
    CAS 

    Google Scholar
     

  • Figueiredo DD, Batista RA, Roszak PJ, Hennig L, Köhler C. Auxin production in the endosperm drives seed coat development in Arabidopsis. elife. 2016;5:e20542.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandrasekaran U, Luo X, Wang Q, Shu K. Are there unidentified factors involved in the germination of nanoprimed seeds? Front Plant Sci. 2020;11:832.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guha T, Das H, Mukherjee A, Kundu R. Elucidating ROS signaling networks and physiological changes involved in nanoscale zero valent iron primed rice seed germination sensu stricto. Free Radic Biol Med. 2021;171:11–25.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Feng Y, Kreslavski VD, Shmarev AN, Ivanov AA, Zharmukhamedov SK, Kosobryukhov A, et al. Effects of iron oxide nanoparticles (Fe3O4) on growth, photosynthesis, antioxidant activity and distribution of mineral elements in wheat (Triticum aestivum) plants. Plants. 2022;11:1894.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep. 2017;7:8263.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acharya P, Jayaprakasha GK, Crosby KM, Jifon JL, Patil BS. Green-synthesized nanoparticles enhanced seedling growth, yield, and quality of onion (Allium Cepa L). ACS Sustain Chem Eng. 2019;7:14580–90.

    Article 
    CAS 

    Google Scholar
     

  • Mahakham W, Theerakulpisut P, Maensiri S, Phumying S, Sarmah AK. Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Sci Total Environ. 2016;573:1089–102.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • El-Badri AM, Batool M, Mohamed IAA, Wang Z, Wang C, Tabl KM, et al. Mitigation of the salinity stress in rapeseed (Brassica napus L.) productivity by exogenous applications of bio-selenium nanoparticles during the early seedling stage. Environ Pollut. 2022;310:119815.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Szöllösi R, Molnár Á, Kondak S, Kolbert Z. Dual effect of nanomaterials on germination and seedling growth: stimulation vs. phytotoxicity. Plants (Basel). 2020;9:1745.

    PubMed 

    Google Scholar
     

  • Azim Z, Singh NB, Singh A, Amist N, Niharika Khare S, Yadav RK, et al. A review summarizing uptake, translocation and accumulation of nanoparticles within the plants: current status and future prospectus. J Plant Biochem Biotechnol. 2023;32:211–24.

    Article 

    Google Scholar
     

  • Ma Y, He X, Zhang P, Zhang Z, Ding Y, Zhang J, et al. Xylem and phloem-based transport of CeO2 nanoparticles in hydroponic cucumber plants. Environ Sci Technol. 2017;51:5215–21.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ristroph K, Zhang Y, Nava V, Wielinski J, Kohay H, Kiss AM, et al. Flash nanoprecipitation as an agrochemical nanocarrier formulation platform: phloem uptake and translocation after foliar administration. ACS Agric Sci Technol. 2023;3:987–95.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang F, Li X, Wei Y. Selenium and selenoproteins in health. Biomolecules. 2023;13:799.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang Y, Fu L, Li S, Yan J, Sun M, Giraldo JP, et al. Star polymer size, charge content, and hydrophobicity affect their leaf uptake and translocation in plants. Environ Sci Technol. 2021;55:10758–68.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wong MH, Misra RP, Giraldo JP, Kwak SY, Son Y, Landry MP, et al. Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett. 2016;16:1161–72.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu P, An J, Faulkner MM, Wu H, Li Z, Tian X, et al. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano. 2020;14:7970–86.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Spielman-Sun E, Avellan A, Bland GD, Tappero RV, Acerbo AS, Unrine JM, et al. Nanoparticle surface charge influences translocation and leaf distribution in vascular plants with contrasting anatomy. Environ Sci: Nano. 2019;6:2508–19.

    CAS 

    Google Scholar
     

  • Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M, et al. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano. 2011;5:493–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, et al. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L). Environ Sci Technol. 2012;46:4434–41.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nhan LV, Ma C, Rui Y, Liu S, Li X, Xing B, et al. Phytotoxic mechanism of nanoparticles: destruction of chloroplasts and vascular bundles and alteration of nutrient absorption. Sci Rep. 2015;5:11618.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ji Y, Zhou Y, Ma C, Feng Y, Hao Y, Rui Y, et al. Jointed toxicity of TiO2 NPs and cd to rice seedlings: NPs alleviated cd toxicity and cd promoted NPs uptake. Plant Physiol Biochem. 2017;110:82–93.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pérez-de-Luque A. Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front Environ Sci. 2017;5:12.

    Article 

    Google Scholar
     

  • Xiong T, Zhang T, Xian Y, Kang Z, Zhang S, Dumat C, et al. Foliar uptake, biotransformation, and impact of CuO nanoparticles in Lactuca sativa L. var. ramosa hort. Environ Geochem Health. 2021;43:423–39.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Faraz A, Faizan M, Sami F, Siddiqui H, Pichtel J, Hayat S. Nanoparticles: biosynthesis, translocation and role in plant metabolism. IET Nanobiotechnol. 2019;13:345–52.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aqeel U, Aftab T, Khan MMA, Naeem M, Khan MN. A comprehensive review of impacts of diverse nanoparticles on growth, development and physiological adjustments in plants under changing environment. Chemosphere. 2022;291:132672.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li D, An Q, Wu Y, Li JQ, Pan C. Foliar application of selenium nanoparticles on celery stimulates several nutrient component levels by regulating the α-linolenic acid pathway. ACS Sustain Chem Eng. 2020;8:10502–10.

    Article 
    CAS 

    Google Scholar
     

  • Li G, Xu J, Xu K. Physiological functions of carbon dots and their applications in agriculture: a review. Nanomaterials. 2023;13:2684.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Younes NA, Dawood MFA, Wardany AA. Biosafety assessment of graphene nanosheets on leaf ultrastructure, physiological and yield traits of Capsicum annuum L. and Solanum melongena L. Chemosphere. 2019;228:318–27.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gao X, Rodrigues SM, Spielman-Sun E, Lopes S, Rodrigues S, Zhang Y, et al. Effect of soil organic matter, soil pH, and moisture content on solubility and dissolution rate of CuO NPs in soil. Environ Sci Technol. 2019;53:4959–67.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shahane S, Kumar A. Effect of copper-based nanoagrochemicals on plants and soil: a critical review. In: Abd-Elsalam KA, editor Copper nanostructures: next-generation of agrochemicals for sustainable agroecosystems. Elsevier. 2022. 615–637.

  • Alshaal T, El-Ramady H. Foliar application: from plant nutrition to biofortification. Environ Biodivers Soil Secur. 2017;1:71–83.


    Google Scholar
     

  • Ji H, Guo Z, Wang G, Wang X, Liu H. Effect of ZnO and CuO nanoparticles on the growth, nutrient absorption, and potential health risk of the seasonal vegetable Medicago polymorpha L. PeerJ. 2022;10:e14038.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kohatsu MY, Pelegrino MT, Monteiro LR, Freire BM, Pereira RM, Fincheira P, et al. Comparison of foliar spray and soil irrigation of biogenic CuO nanoparticles (NPs) on elemental uptake and accumulation in lettuce. Environ Sci Pollut Res Int. 2021;28:16350–67.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zong X, Wu D, Zhang J, Tong X, Yin Y, Sun Y, et al. Size-dependent biological effect of copper oxide nanoparticles exposure on cucumber (Cucumis sativus). Environ Sci Pollut Res. 2022;29:69517–26.

    Article 
    CAS 

    Google Scholar
     

  • de Francisco M, Romeiro A, Durães L, Álvarez-Torrellas S, Ibañez MA, Almendros P. Environmental behaviour of synthesized and commercial agricultural zinc products: leaching, migration, and availability in soils. J Soil Sci Plant Nutr. 2024;24:5293–308.

    Article 

    Google Scholar
     

  • Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, et al. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci. 2016;7:815.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raiesi-Ardali T, Maˈmani L, Chorom M. Improved iron use efficiency in tomato using organically coated iron oxide nanoparticles as efficient bioavailable Fe sources. Chem Biol Technol Agric. 2022;9:59.

    Article 
    CAS 

    Google Scholar
     

  • Wang K, Wang Y, Li K, Wan Y, Wang Q, Zhuang Z, et al. Uptake, translocation and biotransformation of selenium nanoparticles in rice seedlings (Oryza sativa L). J Nanobiotechnol. 2020;18:103.

    Article 
    CAS 

    Google Scholar
     

  • Yang C, Wang C, Khan Z, Duan S, Li Z, Shen H. Algal polysaccharides-selenium nanoparticles regulate the uptake and distribution of selenium in rice plants. Front Plant Sci. 2023;14:1135080.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng C, Wang Y, Castillo C, Zhao Y, Xu W, Lian J, et al. Nanoscale iron (Fe3O4) surface charge controls Fusarium suppression and nutrient accumulation in tomato (Solanum lycopersicum L). ACS Sustain Chem Eng. 2024;12:13285–96.

    Article 
    CAS 

    Google Scholar
     

  • Lian J, Cheng L, Wang X, Chen Y, Deng C, Wang Y, et al. Bespoke ZnO NPs synthesis platform to optimize their performance for improving the grain yield, zinc biofortification, and cd mitigation in wheat. ACS Sustain Chem Eng. 2024;12:716–27.

    Article 

    Google Scholar
     

  • Bjørklund G, Semenova Y, Hangan T, Pen JJ, Aaseth J, Peana M. Perspectives on iron deficiency as a cause of human disease in global public health. Curr Med Chem. 2024;31:1428–40.

    Article 
    PubMed 

    Google Scholar
     

  • Galy B, Conrad M, Muckenthaler M. Mechanisms controlling cellular and systemic iron homeostasis. Nat Rev Mol Cell Biol. 2024;25:133–55.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington (DC): National Academies Press (US); 9, Iron. 2001a. https://www.ncbi.nlm.nih.gov/books/NBK222309/. Accessed 21 August 2025.

  • Moustarah F, Daley SF. Dietary Iron. In: StatPearls. Treasure Island (FL): StatPearls Publishing. 2024. https://pubmed.ncbi.nlm.nih.gov/31082013/. Accessed 21 August 2025.

  • Kermeur N, Pédrot M, Cabello-Hurtado F. Iron availability and homeostasis in plants: a review of responses, adaptive mechanisms, and signaling. Methods Mol Biol. 2023;2642:49–81.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Montejano-Ramírez V, Valencia-Cantero E. Crosstalk between iron deficiency response and defense establishment in plants. Int J Mol Sci. 2023;24:6236.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • González-Guerrero M, Navarro-Gómez C, Rosa-Núñez E, Echávarri-Erasun C, Imperial J, Escudero V. Forging a symbiosis: transition metal delivery in symbiotic nitrogen fixation. New Phytol. 2023;239:2113–25.

    Article 
    PubMed 

    Google Scholar
     

  • Liberal Â, Pinela J, Vívar-Quintana AM, Ferreira ICFR, Barros L. Fighting iron-deficiency anemia: innovations in food fortificants and biofortification strategies. Foods. 2020;9:1871.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • El-Ramady H, Abdalla N, Elbasiouny H, Elbehiry F, Elsakhawy T, Omara AE, et al. Nano-biofortification of different crops to immune against COVID-19: a review. Ecotoxicol Environ Saf. 2021;222:112500.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Khan M, Pandey A, Hamurcu M, Gezgin S, Athar T, Rajput V, et al. Insight into the prospects for nanotechnology in wheat biofortification. Biology. 2021;10:1123.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Perea-Vélez YS, Carrillo-González R, González-Chávez MCA, Vangronsveld J, Monasterio IO, Maruri DT. Citrate-coated cobalt ferrite nanoparticles for the nano-enabled biofortification of wheat. Food Funct. 2023;14:4017–35.

    Article 
    PubMed 

    Google Scholar
     

  • Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, et al. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere. 2019;214:269–77.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ahmad S, Ahmad N, Islam MS, Ahmad MA, Ercisli S, Ullah R, et al. Rice seeds biofortification using biogenic iron oxide nanoparticles synthesized by using Glycyrrhiza glabra: a study on growth and yield improvement. Sci Rep. 2024;14:12368.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fakharzadeh S, Hafizi M, Baghaei MA, Etesami M, Khayamzadeh M, Kalanaky S, et al. Using nanochelating technology for biofortification and yield increase in rice. Sci Rep. 2020;10:4351.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sperotto RA, Navarro BB, Alves JS, Dias PVC, Tavares ACO, Brunetto G, et al. Agronomic and Transgenic approaches for rice Zn biofortification. In: Kumar S, Dikshit HK, Mishra GP, Singh A, editors. Biofortification of staple crops. Singapore: Springer; 2022. pp. 461–82.

    Chapter 

    Google Scholar
     

  • Shafiq F, Ahmad A, Anwar S, Nisa MU, Iqbal M, Raza SH, et al. Spinel nanocomposite (nMnZnFe2O4) synchronously promotes grain yield and Fe-Zn biofortification in non-aromatic rice. Plant Physiol Biochem. 2023;201:107830.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hossain ME, Bezbaruah AN. Nano- and microscale iron for Fe fortification in Spinacia Oleracea. Nanotechnol Environ Eng. 2021;6:61.

    Article 
    CAS 

    Google Scholar
     

  • Taskin MB, Gunes A. Iron biofortification of wheat grains by foliar application of nano Zero-Valent iron (nZVI) and other iron sources with urea. J Soil Sci Plant Nutr. 2022;22:4642–52.

    Article 
    CAS 

    Google Scholar
     

  • Mondal A, Dey I, Mukherjee A, Ismail A, Satpati GG, Banerjee S, et al. Spirulina biomass loaded with iron nanoparticles: a novel biofertilizer for the growth and enrichment of iron content in rice plants. Biocatal Agric Biotechnol. 2024;61:103387.

    Article 
    CAS 

    Google Scholar
     

  • Guha T, Mukherjee A, Kundu R. Nano-cale zero valent iron (nZVI) priming enhances yield, alters mineral distribution and grain nutrient content of Oryza sativa L. cv. Gobindobhog: a field study. J Plant Growth Regul. 2022;41:710–33.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Guillén-Enríquez RR, Zuñiga-Estrada L, Ojeda-Barrios DL, Rivas-García T, Trejo-Valencia R, Preciado-Rangel P. Effect of nano-biofortification with iron on yield and bioactive compounds in cucumber. Rev Mex Cienc Agric. 2022;13:173–84.


    Google Scholar
     

  • Ricachenevsky FK, Menguer PK, Keil R, Sperotto RA. Zinc biofortification of rice by engineering metal transporter genes. In: Swamy M, Macovei A, Trijatmiko KR, editors. Genetic engineering and genome editing for zinc biofortification of rice. Elsevier: Academic; 2023. pp. 97–114.

    Chapter 

    Google Scholar
     

  • Thapa DB, Subedi M, Yadav RP, Joshi BP, Adhikari BN, Shrestha KP, et al. Variation in grain zinc and iron concentrations, grain yield and associated traits of biofortified bread wheat genotypes in Nepal. Front Plant Sci. 2022;13:881965.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baumgartner J, Winkler HC, Zandberg L, Tuntipopipat S, Mankong P, Bester C, et al. Iron from nanostructured ferric phosphate: absorption and biodistribution in mice and bioavailability in iron deficient anemic women. Sci Rep. 2022;12:2792.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Khoja KK, Buckley A, Aslam MF, Sharp PA, Latunde-Dada GO. Vitro bioaccessibility and bioavailability of iron from mature and microgreen fenugreek, rocket and broccoli. Nutrients. 2020;12:1057.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Huang L, Drake VJ, Ho E, Zinc. Adv Nut. 2015;6:224–6.

    Article 

    Google Scholar
     

  • Wang F, Zhong J, Zhang R, Sun Y, Dong Y, Wang M, et al. Zinc and COVID-19: immunity, susceptibility, severity and intervention. Crit Rev Food Sci Nutr. 2024;64:1969–87.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Singh A, Rajput VD, Pandey D, Sharma R, Ghazaryan K, Minkina T. Nano zinc-enabled strategies in crops for combatting zinc malnutrition in human health. Front Biosci. 2023;28:158.

    Article 
    CAS 

    Google Scholar
     

  • Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington (DC): National Academies Press (US); 12, Zinc. 2001b. https://www.ncbi.nlm.nih.gov/books/NBK222317/. Accessed 21 August 2025.

  • Morris AL, Mohiuddin SS, Biochemistry. Nutrients. In: StatPearls. Treasure Island (FL): StatPearls Publishing. 2024. https://www.ncbi.nlm.nih.gov/books/NBK554545/. Accessed 21 August 2025.

  • Hamzah Saleem M, Usman K, Rizwan M, Al Jabri H, Alsafran M. Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Front Plant Sci. 2022;13:1033092.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Recena R, García-López AM, Delgado A. Zinc uptake by plants as affected by fertilization with Zn sulfate, phosphorus availability, and soil properties. Agronomy. 2021;11:390.

    Article 
    CAS 

    Google Scholar
     

  • Cabot C, Martos S, Llugany M, Gallego B, Tolrà R, Poschenrieder C. A role for zinc in plant defense against pathogens and herbivores. Front Plant Sci. 2019;10:1171.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Umair Hassan M, Aamer M, Umer Chattha M, Haiying T, Shahzad B, Barbanti L, et al. The critical role of zinc in plants facing the drought stress. Agriculture (Basel). 2020;10:396.

    Article 

    Google Scholar
     

  • Khan ST, Malik A, Ahmad F. Role of zinc homeostasis in plant growth. In: Khan ST, Malik A, editors. Microbial biofertilizers and micronutrient availability. Springer International Publishing; 2022c. pp. 179–95. In.

  • Kumar J, Saini DK, Kumar A, Kumari S, Gahlaut V, Rahim MS, et al. Biofortification of Triticum species: a stepping stone to combat malnutrition. BMC Plant Biol. 2024;24:668.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mazhar Z, Akhtar J, Alhodaib A, Naz T, Zafar MI, Iqbal MM, et al. Efficacy of ZnO nanoparticles in Zn fortification and partitioning of wheat and rice grains under salt stress. Sci Rep. 2023;13:2022.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Francis DV, Abdalla AK, Mahakham W, Sarmah AK, Ahmed ZFR. Interaction of plants and metal nanoparticles: exploring its molecular mechanisms for sustainable agriculture and crop improvement. Environ Int. 2024;190:108859.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wessells KR, Brown KH. Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE. 2012;7:e50568.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knez M, Stangoulis JCR. Dietary Zn deficiency, the current situation and potential solutions. Nutr Res Rev. 2023;36:199–215.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Singh A, Shukla G, Gaurav SS, Rani P. Nano-biofortification of zinc in potato (Solanum tuberosum L.) and tomato (Solanum lycopersicum L.) crops. Macromol Symp. 2023;407:2100403.

    Article 
    CAS 

    Google Scholar
     

  • Guillén-Enríquez RR, Sánchez-Chávez E, Fortis-Hernández M, Márquez-Guerrero SY, Espinosa-Palomeque B, Preciado-Rangel P. ZnO nanoparticles improve bioactive compounds, enzymatic activity and zinc concentration in grapevine. Not Bot Horti Agrobot. 2023;51:13377.

    Article 

    Google Scholar
     

  • Asim M, Ahmad W, Qamar Z, Awais M, Nepal J, Ahmad I. Seed coating with zinc oxide nanofiber (ZnONF) and urea improved zinc uptake; recovery efficiency, growth, and yield of bread wheat (Triticum aestivum L). J Soil Sci Plant Nut. 2022;22:5009–20.

    Article 
    CAS 

    Google Scholar
     

  • Parra-Torrejón B, Cáceres A, Sánchez M, Sainz L, Guzmán M, Bermúdez-Perez FJ, et al. Multifunctional nanomaterials for biofortification and protection of tomato plants. Environ Sci Technol. 2023;57:14950–60.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du W, Yang J, Peng Q, Liang X, Mao H. Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: from toxicity and zinc biofortification. Chemosphere. 2019;227:109–16.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Obrador A, Gonzalez D, Almendros P, García-Gómez C, Fernández M. Assessment of phytotoxicity and behavior of 1-year-aged Zn in soil from ZnO nanoparticles, bulk ZnO, and Zn sulfate in different soil-plant cropping systems: from biofortification to toxicity. J Soil Sci Plant Nut. 2022;22:150–64.

    Article 
    CAS 

    Google Scholar
     

  • Zhang H, Zhao X, Bai J, Tang M, Du W, Lv Z, et al. Effect of ZnO nanoparticle application on crop safety and soil environment: a case study of potato planting. Environ Sci: Nano. 2024;11:351–62.

    CAS 

    Google Scholar
     

  • Alloway BJ. Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health. 2009;31:537–48.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • White PJ, Broadley MR. Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009;182:49–84.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Joy EJ, Broadley MR, Young SD, Black CR, Chilimba AD, Ander EL, et al. Soil type influences crop mineral composition in Malawi. Sci Total Environ. 2015;505:587–95.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Waters BM, Sankaran RP. Moving micronutrients from the soil to the seeds: genes and physiological processes from a biofortification perspective. Plant Sci. 2011;180:562–74.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kamaral C, Neate SM, Gunasinghe N, Milham PJ, Paterson DJ, Kopittke PM, et al. Genetic biofortification of wheat with zinc: opportunities to fine-tune zinc uptake, transport and grain loading. Physiol Plant. 2022;174:e13612.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nafees M, Sehrish AK, Alomrani SO, Qiu L, Saeed A, Ahmad S, et al. Mechanism and synergistic effect of sulfadiazine (SDZ) and cadmium toxicity in spinach (Spinacia oleracea L.) and its alleviation through zinc fortification. J Hazard Mater. 2024;464:132903.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chattha MU, Amjad T, Khan I, Nawaz M, Ali M, Chattha MB, et al. Mulberry based zinc nano-particles mitigate salinity induced toxic effects and improve the grain yield and zinc bio-fortification of wheat by improving antioxidant activities, photosynthetic performance, and accumulation of osmolytes and hormones. Front Plant Sci. 2022;13:920570.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bautista-Diaz J, Cruz-Alvarez O, Hernández-Rodríguez OA, Sánchez-Chávez E, Jacobo-Cuellar JL, Preciado-Rangel P, et al. Zinc sulphate or zinc nanoparticle applications to leaves of green beans. Folia Hortic. 2021;33:365–75.

    Article 

    Google Scholar
     

  • Mahdieh M, Sangi MR, Bamdad F, Ghanem A. Effect of seed and foliar application of nano-zinc oxide, zinc chelate, and zinc sulphate rates on yield and growth of Pinto bean (Phaseolus vulgaris) cultivars. J Plant Nutr. 2018;41:2401–12.

    Article 
    CAS 

    Google Scholar
     

  • Sameer A, Rabia S, Khan AAA, Zaman QU, Hussain A. Combined application of zinc oxide and iron nanoparticles enhanced red sails lettuce growth and antioxidants enzymes activities while reducing the chromium uptake by plants grown in a Cr-contaminated soil. Int J Phytoremed. 2024;26:1728–40.

    Article 
    CAS 

    Google Scholar
     

  • Nakandalage N, Nicolas M, Norton RM, Hirotsu N, Milham PJ, Seneweera S. Improving rice zinc biofortification success rates through genetic and crop management approaches in a changing environment. Front Plant Sci. 2016;7:764.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Praharaj S, Skalicky M, Maitra S, Bhadra P, Shankar T, Brestic M, et al. Zinc biofortification in food crops could alleviate the zinc malnutrition in human health. Molecules. 2021;26:3509.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang S, Xu L, Hao M. Impacts of long-term micronutrient fertilizer application on soil properties and micronutrient availability. Int J Environ Res Public Health. 2022;19:16358.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Niazkhani M, Navvabi A. Interactions between Zn, Fe, Cu and Mn in various organs of bread wheat at deficiency and adequate of absorbable zinc. Am J Plant Sci. 2025;16:232–44.

    Article 
    CAS 

    Google Scholar
     

  • Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. Washington (DC): National Academies Press (US); 7, Selenium. 2020. https://www.ncbi.nlm.nih.gov/books/NBK225470/. Accessed 21 August 2025.

  • Hu W, Zhao C, Hu H, Yin S. Food sources of selenium and its relationship with chronic diseases. Nutrients. 2021;13:1739.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rayman MP, Taylor EW, Zhang J. The relevance of selenium to viral disease with special reference to SARS-CoV-2 and COVID-19. Proc Nutr Soc. 2023;82:1–12.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Genchi G, Lauria G, Catalano A, Sinicropi MS, Carocci A. Biological activity of selenium and its impact on human health. Int J Mol Sci. 2023;24:2633.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sun Y, Wang Z, Gong P, Yao W, Ba Q, Wang H. Review on the health-promoting effect of adequate selenium status. Front Nutr. 2023;10:1136458.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moulick D, Mukherjee A, Das A, Roy A, Majumdar A, Dhar A, et al. Selenium – an environmentally friendly micronutrient in agroecosystem in the modern era: an overview of 50-year findings. Ecotoxicol Environ Saf. 2024;270:115832.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sousa GF, Silva MA, Carvalho MR, Morais EG, Benevenute PAN, Van Opbergen GAZ, et al. Foliar selenium application to reduce the induced-drought stress effects in coffee seedlings: induced priming or alleviation effect? Plants. 2023;12:3026.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ikram S, Li Y, Lin C, Yi D, Heng W, Li Q, et al. Selenium in plants: a nexus of growth, antioxidants, and phytohormones. J Plant Physiol. 2024;296:154237.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Silva Junior EC, Wadt LHO, Silva KE, Lima RMB, Batista KD, Guedes MC, et al. Natural variation of selenium in Brazil nuts and soils from the Amazon region. Chemosphere. 2017;188:650–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Oztekin Y, Buyuktuncer Z. Agronomic biofortification of plants with iodine and selenium: a potential solution for iodine and selenium deficiencies. Biol Trace Elem Res. 2025;203:2899–910.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang M, Zhou F, Cheng N, Chen P, Ma Y, Zhai H, et al. Soil and foliar selenium application: impact on accumulation, speciation, and bioaccessibility of selenium in wheat (Triticum aestivum L). Front Plant Sci. 2022;13:988627.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sunic K, Spanic V. Genetic biofortification of winter wheat with selenium (Se). Plants (Basel). 2024;13:1816.

    PubMed 
    CAS 

    Google Scholar
     

  • Sindireva A, Golubkina N, Bezuglova H, Fedotov M, Alpatov A, Erdenotsogt E, et al. Effects of high doses of selenate, selenite and nano-selenium on biometrical characteristics, yield and biofortification levels of Vicia faba L. cultivars. Plants. 2023;12:2847.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lyu L, Wang H, Liu R, Xing W, Li J, Man YB, et al. Size-dependent transformation, uptake, and transportation of senps in a wheat-soil system. J Hazard Mater. 2022;424(Pt A):127323.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Huang S, Yu K, Xiao Q, Song B, Yuan W, Long X, et al. Effect of bio-nano-selenium on yield, nutritional quality and selenium content of radish. J Food Compos Anal. 2023;115:104927.

    Article 
    CAS 

    Google Scholar
     

  • Shiriaev A, Pezzarossa B, Rosellini I, Malorgio F, Lampis S, Ippolito A, et al. Efficacy and comparison of different strategies for selenium biofortification of tomatoes. Horticulturae. 2022;8:800.

    Article 

    Google Scholar
     

  • Wang C, Cheng T, Liu H, Zhou F, Zhang J, Zhang M, et al. Nano-selenium controlled cadmium accumulation and improved photosynthesis in indica rice cultivated in lead and cadmium combined paddy soils. J Environ Sci (China). 2021;103:336–46.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yan J, Chen X, Zhu T, Zhang Z, Fan J. Effects of selenium fertilizer application on yield and selenium accumulation characteristics of different Japonica rice varieties. Sustainability. 2021;13:10284.

    Article 
    CAS 

    Google Scholar
     

  • Huang S, Qin H, Jiang D, Lu J, Zhu Z, Huang X. Bio-nano selenium fertilizer improves the yield, quality, and organic selenium content in rice. J Food Compos Anal. 2024;132:106348.

    Article 
    CAS 

    Google Scholar
     

  • Mahmoud S, Shedeed S, El-Ramady H, Abdalla Z, El-Bassiony AEM, El-Sawy S. Biological nano-Selenium for eggplant biofortification under soil nutrient deficiency. Egypt J Soil Sci. 2023;63:151–62.


    Google Scholar
     

  • Neysanian M, Iranbakhsh A, Ahmadvand R, Ardebili ZO, Ebadi M. Comparative efficacy of selenate and selenium nanoparticles for improving growth, productivity, fruit quality, and postharvest longevity through modifying nutrition, metabolism, and gene expression in tomato; potential benefits and risk assessment. PLoS ONE. 2020;15:e0244207.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cheng B, Wang C, Yue L, Chen F, Cao X, Lan Q, et al. Selenium nanomaterials improve the quality of lettuce (Lactuca sativa L.) by modulating root growth, nutrient availability, and photosynthesis. NanoImpact. 2023;29:100449.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Vinceti M, Filippini T, Cilloni S, Bargellini A, Vergoni AV, Tsatsakis A, et al. Health risk assessment of environmental selenium: emerging evidence and challenges. Mol Med Rep. 2017;15:3323–35.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Winkel LH, Vriens B, Jones GD, Schneider LS, Pilon-Smits E, Bañuelos GS. Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Nutrients. 2015;7:4199–239.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rayman MP. Selenium and human health. Lancet. 2012;379:1256–68.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu T, Zhang S, Li K, Guo Y. Selenium nanoparticles regulate antioxidant enzymes and flavonoid compounds in Fagopyrum dibotrys. Plants (Basel). 2024;13:3098.

    PubMed 
    CAS 

    Google Scholar
     

  • Mateus MPB, Tavanti RFR, Tavanti TR, Santos EF, Jalal A, Reis ARD. Selenium biofortification enhances ROS scavenge system increasing yield of coffee plants. Ecotoxicol Environ Saf. 2021;209:111772.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rady MM, Desoky EM, Ahmed SM, Majrashi A, Ali EF, Arnaout SMAI, et al. Foliar nourishment with nano-selenium dioxide promotes physiology, biochemistry, antioxidant defenses, and salt tolerance in Phaseolus vulgaris. Plants (Basel). 2021;10:1189.

    PubMed 
    CAS 

    Google Scholar
     

  • Vinceti M, Filippini T, Wise LA. Environmental selenium and human health: an update. Curr Environ Health Rep. 2018;5:464–85.

    Article 
    PubMed 

    Google Scholar
     

  • Deshpande P, Dapkekar A, Oak MD, Paknikar KM, Rajwade JM. Zinc complexed chitosan/TPP nanoparticles: a promising micronutrient nanocarrier suited for foliar application. Carbohydr Polym. 2017;165:394–401.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Moreno-Martín G, Sanz-Landaluze J, León-González ME, Madrid Y. Insights into the accumulation and transformation of Ch-SeNPs by Raphanus sativus and Brassica juncea: effect on essential elements uptake. Sci Total Environ. 2020;725:138453.

    Article 
    PubMed 

    Google Scholar
     

  • Dutta S, Pal S, Sharma RK, Panwar P, Kant V, Khola OPS. Implication of wood-derived hierarchical carbon nanotubes for micronutrient delivery and crop biofortification. ACS Omega. 2021;6:23654–65.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ekanayake SA, Godakumbura PI. Synthesis of a dual-functional nanofertilizer by embedding ZnO and CuO nanoparticles on an alginate-based hydrogel. ACS Omega. 2021;6:26262–72.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Leonardi M, Caruso GM, Carroccio SC, Boninelli S, Curcuruto G, Zimbone M, et al. Smart nanocomposites of chitosan/alginate nanoparticles loaded with copper oxide as alternative nanofertilizers. Environ Sci Nano. 2021;8:174–87.

    Article 
    CAS 

    Google Scholar
     

  • Sigmon LR, Adisa IO, Liu B, Elmer WH, White JC, Dimkpa CO, et al. Biodegradable polymer nanocomposites provide effective delivery and reduce phosphorus loss during plant growth. ACS Agric Sci Technol. 2021;1:529–39.

    Article 
    CAS 

    Google Scholar
     

  • Viltres-Portales M, Sánchez-Martín MJ, Boada R, Llugany M, Valiente M. Liposomes as selenium nanocarriers for foliar application to wheat plants: a biofortification strategy. Food Chem. 2024;448:139123.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yasmeen F, Raja NI, Razzaq A, Komatsu S. Proteomic and physiological analyses of wheat seeds exposed to copper and iron nanoparticles. Biochim Biophys Acta Proteins Proteom. 2017;1865:28–42.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wan J, Wang R, Wang R, Ju Q, Wang Y, Xu J. Comparative physiological and transcriptomic analyses reveal the toxic effects of ZnO nanoparticles on plant growth. Environ Sci Technol. 2019;53:4235–44.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • De La Torre-Roche R, Cantu J, Tamez C, Zuverza-Mena N, Hamdi H, Adisa IO, et al. Seed biofortification by engineered nanomaterials: a pathway to alleviate malnutrition? J Agric Food Chem. 2020;68:12189–202.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sun H, Du W, Peng Q, Lv Z, Mao H, Kopittke PM. Development of ZnO nanoparticles as an efficient Zn fertilizer: using synchrotron-based techniques and laser ablation to examine elemental distribution in wheat grain. J Agric Food Chem. 2020a;68:5068–75.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sun L, Wang Y, Wang R, Wang R, Zhang P, Ju Q, et al. Physiological, transcriptomic, and metabolomic analyses reveal zinc oxide nanoparticles modulate plant growth in tomato. Environ Sci Nano. 2020;7:3587–604.

    Article 
    CAS 

    Google Scholar
     

  • Minello LVP, Ruffatto K, Corrêa FM, Mariani LF, Ahmad I, Sperotto RA. Bridging the gap: integrating plant physiology and soil science in nanotechnology and biochar research for sustainable agriculture. Front Plant Sci. 2025;16:1661442.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He X, Deng H, Hwang H. The current application of nanotechnology in food and agriculture. J Food Drug Anal. 2018;27:1–21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salieri B, Turner DA, Nowack B, Hischier R. Life cycle assessment of manufactured nanomaterials: where are we? NanoImpact. 2018;10:108–20.

    Article 

    Google Scholar
     

  • Fernandes C, Jathar M, Sawant BKS, Warde T. Scale-up of nanoparticle manufacturing process. In: Jindal AB, editor. Pharmaceutical process engineering and scale-up principles. AAPS Introductions in the Pharmaceutical Sciences. Volume 13. Cham: Springer; 2023. pp 173–203.


    Google Scholar
     

  • Zain M, Ma H, Chaudhary S, Nuruzaman M, Azeem I, Mehmood F, et al. Nanotechnology in precision agriculture: advancing towards sustainable crop production. Plant Physiol Biochem. 2023;206:108244.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang J, Yu SH. Carbon dots: large-scale synthesis, sensing and bioimaging. Mat Today. 2016;19:382–93.

    Article 
    CAS 

    Google Scholar
     

  • Liu X, Meng H. Consideration for the scale-up manufacture of nanotherapeutics – a critical step for technology transfer. VIEW. 2021;2:20200190.

    Article 
    CAS 

    Google Scholar
     

  • Shegokar R, Nakach M. Large-scale manufacturing of nanoparticles – an industrial outlook. In: Shegokar R, editor Drug delivery aspects. Elsevier. 2020. 57–77.

  • Peng S, Qin X. Application of phytonanotechnology for modern sustainable green agriculture: promising opportunities and scientific challenges. Ind Crops Prod. 2024;218:119001.

    Article 

    Google Scholar
     

  • Bharali A, Deka B, Sahu BP, Laloo D. Major challenges and probable scientific solutions toward the large-scale production of plant-based metallic nanoparticles: a systematic review. Nanotechnol Environ Eng. 2023;8:933–41.

    Article 

    Google Scholar
     

  • Sundaria N, Singh M, Upreti P, Chauhan RP, Jaiswal JP, Kumar A. Seed priming with iron oxide nanoparticles triggers iron acquisition and biofortification in wheat (Triticum aestivum L.) grains. J Plant Growth Regul. 2019;38:122–31.

    Article 
    CAS 

    Google Scholar
     

  • Sahu S, Gautam S, Singh A, Lohani P, Sharma C, Pathak P, et al. Synthesis and characterization of chitosan-zinc-salicylic acid nanoparticles: a plant biostimulant. Int J Biol Macromol. 2023;253:127602.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lv Z, Zhong M, Zhou Q, Li Z, Sun H, Bai J, et al. Nutrient strengthening of winter wheat by foliar ZnO and Fe3O4 nps: food safety, quality, elemental distribution and effects on soil bacteria. Sci Total Environ. 2023;893:164866.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ahmad W, Zou Z, Awais M, Munsif F, Khan A, Nepal J, et al. Seed-primed and foliar Oxozinc nanofiber application increased wheat production and Zn biofortification in calcareous-alkaline soil. Agronomy. 2023;13:400.

    Article 
    CAS 

    Google Scholar
     

  • Hussain A, Rizwan M, Ali S, Rehman MZU, Qayyum MF, Nawaz R, et al. Combined use of different nanoparticles effectively decreased cadmium (Cd) concentration in grains of wheat grown in a field contaminated with cd. Ecotoxicol Environ Saf. 2021;215:112139.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang T, Sun H, Lv Z, Cui L, Mao H, Kopittke PM. Using synchrotron-based approaches to examine the foliar application of ZnSO4 and ZnO nanoparticles for field-grown winter wheat. J Agric Food Chem. 2018;66:2572–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Munir T, Rizwan M, Kashif M, Shahzad A, Ali S, Amin N, et al. Effect of zinc oxide nanoparticles on the growth and Zn uptake in wheat (Triticum aestivum L.) by seed priming method. Dig J Nanomater Biostruct. 2018;13:315–23.


    Google Scholar
     

  • Hussain A, Ali S, Rizwan M, Zia Ur Rehman M, Javed MR, Imran M, et al. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ Pollut. 2018;242:1518–26.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dimkpa CO, Singh U, Bindraban PS, Elmer WH, Gardea-Torresdey JL, White JC. Exposure to weathered and fresh nanoparticle and ionic Zn in soil promotes grain yield and modulates nutrient acquisition in wheat (Triticum aestivum L). J Agric Food Chem. 2018;66:9645–56.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang S, Fang R, Yuan X, Chen J, Mi K, Wang R, et al. Foliar spraying of ZnO nanoparticles enhanced the yield, quality, and zinc enrichment of rice grains. Foods. 2023b;12:3677.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang R, Mi K, Yuan X, Chen J, Pu J, Shi X, et al. Zinc oxide nanoparticles foliar application effectively enhanced zinc and aroma content in rice (Oryza sativa L.) grains. Rice. 2023;16:36.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yuvaraj M, Subramanian KS, Cyriac J. Efficiency of zinc oxide nanoparticles as controlled release nanofertilizer for rice (Oryza sativa L). J Plant Nutr. 2023;46:4477–93.

    Article 
    CAS 

    Google Scholar
     

  • Ramaiyan S, Vijayakumar P, Balasubramanian RAB, Nallathambi M. Influence of nano-zinc oxide and fortified rice residue compost on rice productivity, zinc biofortification, zinc use efficiency, soil quality, zinc fractions and profitability in different rice production systems. J Plant Nutr. 2023;46:4063–84.

    Article 
    CAS 

    Google Scholar
     

  • Parashar R, Afzal S, Mishra M, Singh NK. Improving biofortification success rates and productivity through zinc nanocomposites in rice (Oryza sativa L). Environ Sci Pollut Res. 2023;30:44223–33.

    Article 
    CAS 

    Google Scholar
     

  • Mi K, Yuan X, Wang Q, Dun C, Wang R, Yang S, et al. Zinc oxide nanoparticles enhanced rice yield, quality, and zinc content of edible grain fraction synergistically. Front Plant Sci. 2023;14:1196201.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baral K, Shivay YS, Prasanna R, Kumar D, Srinivasarao C, Mandi S, et al. Enhancing physiological metrics, yield, zinc bioavailability, and economic viability of basmati rice through nano zinc fertilization and summer green manuring in semi-arid South Asian ecosystem. Front Plant Sci. 2023;14:1283588.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elekhtyar NM, Al-Huqail AA. Effect of foliar application of phosphorus, zinc, and silicon nanoparticles along with mineral NPK fertilization on yield and chemical compositions of rice (Oryza sativa L). Agriculture (Basel). 2023;13:1061.

    Article 
    CAS 

    Google Scholar
     

  • Yang G, Yuan H, Ji H, Liu H, Zhang Y, Wang G, et al. Effect of ZnO nanoparticles on the productivity, Zn biofortification, and nutritional quality of rice in a life cycle study. Plant Physiol Biochem. 2021;163:87–94.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Elshayb OM, Farroh KY, Amin HE, Atta AM. Green synthesis of zinc oxide nanoparticles: fortification for rice grain yield and nutrients uptake enhancement. Molecules. 2021;26:584.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kheyri N, Ajam Norouzi H, Mobasser HR, Torabi B. Effect of different resources and methods of silicon and zinc application on agronomic traits, nutrient uptake and grain yield of rice (Oryza sativa L). Appl Ecol Environ Res. 2018;16:5781–98.

    Article 

    Google Scholar
     

  • Almendros P, González D, Fernández MD, García-Gomez C, Obrador A. Both Zn biofortification and nutrient distribution pattern in Cherry tomato plants are influenced by the application of ZnO nanofertilizer. Heliyon. 2022;8:e09130.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ponce-García CO, Noperi-Mosqueda LC, Soto-Parra JM, Yáñez-Muñoz RM, Pérez-Leal R, Navarro-León E, et al. Assaying the efficiency of sulfate, chelate and zinc nanoparticle fertilizers in green bean grown in alkaline soil. J Plant Nut. 2023;46:653–64.

    Article 

    Google Scholar
     

  • Jalal A, Mortinho ES, Oliveira CES, Fernandes GC, Junior EF, De Lima BH, et al. Nano-zinc and plant growth-promoting bacteria is a sustainable alternative for improving productivity and agronomic biofortification of common bean. Chem Biol Technol Agric. 2023;10:77.

    Article 
    CAS 

    Google Scholar
     

  • Palacio-Márquez A, Ramírez-Estrada CA, Sánchez E, Ojeda-Barrios DL, Chávez-Mendoza C, Sida-Arreola JP. Biofortification with nanoparticles and zinc nitrate plus chitosan in green beans: effects on yield and mineral content. Not Bot Horti Agrobot. 2022;50:12672.

    Article 

    Google Scholar
     

  • Aslam Z, Bashir S, Shahzad M, Ahmad JN, Bashir S, Ahmad A, et al. Comparative efficacy of zinc sources for zinc-biofortification of mung bean (Vigna radiata L). Fresenius Environ Bull. 2021;30:9903–12.

    CAS 

    Google Scholar
     

  • Ponce-García CO, Soto-Parra JM, Sánchez E, Muñoz-Márquez E, Piña-Ramírez FJ, Flores-Córdova MA, et al. Efficiency of nanoparticle, sulfate, and zinc-chelate use on biomass, yield, and nitrogen assimilation in green beans. Agronomy. 2019;9:128.

    Article 

    Google Scholar
     

  • Raliya R, Tarafdar JC, Biswas P. Enhancing the mobilization of native phosphorus in the mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi. J Agric Food Chem. 2016;64:3111–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xue YF, Li XJ, Yan W, Miao Q, Zhang CY, Huang M, et al. Biofortification of different maize cultivars with zinc, iron and selenium by foliar fertilizer applications. Front Plant Sci. 2023;14:1144514.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subbaiah LV, Prasad TNVKV, Krishna TG, Sudhakar P, Reddy BR, Pradeep T. Novel effects of nanoparticulate delivery of zinc on growth, productivity, and zinc biofortification in maize (Zea mays L). J Agric Food Chem. 2016;64:3778–88.

    Article 
    PubMed 
    CAS 

    Google Scholar
     



  • Source link

    biofortification Edible Journal Nanobiotechnology Nanotechnologydriven plants
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Targeted delivery of the GPX4 activator via HUCMSC-derived exosomes inhibits ferroptosis in spinal cord injury | Journal of Nanobiotechnology

    November 10, 2025

    Complementary Chemical Adsorption of Iodine Species on MXene/Carboxylated CNTs for High Loading Zinc-Iodine Batteries

    November 9, 2025

    Degradable cyclic amino alcohol ionizable lipids as vectors for potent influenza mRNA vaccines

    November 8, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Guiding Organizations in Their AI Journey

    November 11, 2025

    Chinese Buses, European Fears, and the Truth About Connected Fleets

    November 11, 2025

    Google’s Plan to Fix a Broken System

    November 11, 2025

    swift – IOS app not opened or prompted to open when Universal Link used

    November 10, 2025
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Guiding Organizations in Their AI Journey

    November 11, 2025

    Chinese Buses, European Fears, and the Truth About Connected Fleets

    November 11, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.