Close Menu
  • Home
  • AI
  • Big Data
  • Cloud Computing
  • iOS Development
  • IoT
  • IT/ Cybersecurity
  • Tech
    • Nanotechnology
    • Green Technology
    • Apple
    • Software Development
    • Software Engineering

Subscribe to Updates

Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

    What's Hot

    Data Engineering in the Age of AI – O’Reilly

    November 7, 2025

    Nanoscale Ceramic Film Boosts High-Frequency Performance

    November 7, 2025

    Hackers target massage parlour clients in blackmail scheme

    November 7, 2025
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    Big Tee Tech Hub
    • Home
    • AI
    • Big Data
    • Cloud Computing
    • iOS Development
    • IoT
    • IT/ Cybersecurity
    • Tech
      • Nanotechnology
      • Green Technology
      • Apple
      • Software Development
      • Software Engineering
    Big Tee Tech Hub
    Home»Nanotechnology»Prevention of acute thrombosis with vascular endothelium antioxidative nanoscavenger
    Nanotechnology

    Prevention of acute thrombosis with vascular endothelium antioxidative nanoscavenger

    big tee tech hubBy big tee tech hubOctober 31, 2025006 Mins Read
    Share Facebook Twitter Pinterest Copy Link LinkedIn Tumblr Email Telegram WhatsApp
    Follow Us
    Google News Flipboard
    Prevention of acute thrombosis with vascular endothelium antioxidative nanoscavenger
    Share
    Facebook Twitter LinkedIn Pinterest Email Copy Link


  • Christensen, H. Long-term disability after transient ischaemic attack or minor stroke. Lancet Neurol. 21, 859–860 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Koupenova, M., Kehrel, B. E., Corkrey, H. A. & Freedman, J. E. Thrombosis and platelets: an update. Eur. Heart J. 38, 785–791 (2017).

    PubMed 
    CAS 

    Google Scholar
     

  • Capodanno, D. et al. Dual-pathway inhibition for secondary and tertiary antithrombotic prevention in cardiovascular disease. Nat. Rev. Cardiol. 17, 242–257 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • McFadyen, J. D., Schaff, M. & Peter, K. Current and future antiplatelet therapies: emphasis on preserving haemostasis. Nat. Rev. Cardiol. 15, 181–191 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gorog, D. A. et al. De-escalation or abbreviation of dual antiplatelet therapy in acute coronary syndromes and percutaneous coronary intervention: a Consensus Statement from an international expert panel on coronary thrombosis. Nat. Rev. Cardiol. 20, 830–844 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Yousuf, O. & Bhatt, D. L. The evolution of antiplatelet therapy in cardiovascular disease. Nat. Rev. Cardiol. 8, 547–559 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Song, Y. et al. Platelet-targeted thromboprophylaxis with a human serum albumin fusion drug: preventing thrombosis and reducing cardiac ischemia/reperfusion injury without bleeding complications. Theranostics 14, 3267 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Refaat, A. et al. Activated platelet-targeted IR780 immunoliposomes for photothermal thrombolysis. Adv. Funct. Mater. 33, 2209019 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y., Murugesan, P., Huang, K. & Cai, H. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat. Rev. Cardiol. 17, 170–194 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liang, Y. et al. Interplay of hypoxia-inducible factors and oxygen therapy in cardiovascular medicine. Nat. Rev. Cardiol. 20, 723–737 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Violi, F., Pastori, D., Pignatelli, P. & Carnevale, R. Nutrition, thrombosis, and cardiovascular disease. Circ. Res. 126, 1415–1442 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lee, J. et al. Thrombus targeting aspirin particles for near infrared imaging and on-demand therapy of thrombotic vascular diseases. J. Control. Release 304, 164–172 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ye, H. et al. Thrombus inhibition and neuroprotection for ischemic stroke treatment through platelet regulation and ROS scavenging. ChemMedChem 17, e202200317 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. A thrombin-triggered self-regulating anticoagulant strategy combined with anti-inflammatory capacity for blood-contacting implants. Sci. Adv. 8, eabm3378 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xu, L. et al. Magnetic response combined with bioactive ion therapy: a RONS-scavenging theranostic nanoplatform for thrombolysis and renal ischemia–reperfusion injury. ACS Nano 17, 5695–5712 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xi, H. et al. Caspase-1 inflammasome activation mediates homocysteine-induced pyrop-apoptosis in endothelial cells. Circ. Res. 118, 1525–1539 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Durand, E. et al. In vivo induction of endothelial apoptosis leads to vessel thrombosis and endothelial denudation: a clue to the understanding of the mechanisms of thrombotic plaque erosion. Circulation 109, 2503–2506 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Furie, B. & Furie, B. C. Mechanisms of thrombus formation. N. Engl. J. Med. 359, 938–949 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lippi, G., Franchini, M. & Targher, G. Arterial thrombus formation in cardiovascular disease. Nat. Rev. Cardiol. 8, 502–512 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Somasundar, A. et al. Positive and negative chemotaxis of enzyme-coated liposome motors. Nat. Nanotechnol. 14, 1129–1134 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Amioka, N. et al. Pemafibrate protects the rupture of experimental aortic aneurysm in mice through anti-oxidative stress with induced catalase. Eur. Heart J. 41, ehaa946-3789 (2020).

    Article 

    Google Scholar
     

  • Ciciliano, J. C. et al. Resolving the multifaceted mechanisms of the ferric chloride thrombosis model using an interdisciplinary microfluidic approach. Blood 126, 817–824 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nolfi-Donegan, D., Braganza, A. & Shiva, S. Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 37, 101674 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tyagi, T. et al. A guide to molecular and functional investigations of platelets to bridge basic and clinical sciences. Nat. Cardiovasc. Res. 1, 223–237 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, Y. et al. E-160 Blood clot identification and composition assessment by fast spin-echo (FSE) T2WI and T2* mapping. J. Neurointerv. Surg. 12, A115–A116 (2020).


    Google Scholar
     

  • Cofiell, R. et al. Eculizumab reduces complement activation, inflammation, endothelial damage, thrombosis, and renal injury markers in aHUS. Blood 125, 3253–3262 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Amabile, N. et al. Association of circulating endothelial microparticles with cardiometabolic risk factors in the Framingham Heart Study. Eur. Heart J. 35, 2972–2979 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Abbas, M. et al. Endothelial microparticles from acute coronary syndrome patients induce premature coronary artery endothelial cell aging and thrombogenicity: role of the Ang II/AT1 receptor/NADPH oxidase-mediated activation of MAPKs and PI3-kinase pathways. Circulation 135, 280–296 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kawecki, C., Lenting, P. & Denis, C. von Willebrand factor and inflammation. J. Thromb. Haemost. 15, 1285–1294 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Grover, S. P. & Mackman, N. Tissue factor: an essential mediator of hemostasis and trigger of thrombosis. Arterioscler. Thromb. Vasc. Biol. 38, 709–725 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bhatt, D. L. Aspirin—still the GLOBAL LEADER in antiplatelet therapy. Lancet 392, 896–897 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Tang, Y. D. et al. Randomized comparisons of double-dose clopidogrel or adjunctive cilostazol versus standard dual antiplatelet in patients with high posttreatment platelet reactivity: results of the CREATIVE trial. Circulation 137, 2231–2245 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sweeny, J. M., Gorog, D. A. & Fuster, V. Antiplatelet drug ‘resistance’. Part 1: mechanisms and clinical measurements. Nat. Rev. Cardiol. 6, 273–282 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kim, Y. W. & Byzova, T. V. Oxidative stress in angiogenesis and vascular disease. Blood 123, 625–631 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Binder, C. J., Papac-Milicevic, N. & Witztum, J. L. Innate sensing of oxidation-specific epitopes in health and disease. Nat. Rev. Immunol. 16, 485–497 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mackman, N., Bergmeier, W., Stouffer, G. A. & Weitz, J. I. Therapeutic strategies for thrombosis: new targets and approaches. Nat. Rev. Drug Discov. 19, 333–352 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dayal, S. et al. Hydrogen peroxide promotes aging-related platelet hyperactivation and thrombosis. Circulation 127, 1308–1316 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     



  • Source link

    acute antioxidative endothelium nanoscavenger prevention thrombosis vascular
    Follow on Google News Follow on Flipboard
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
    tonirufai
    big tee tech hub
    • Website

    Related Posts

    Nanoscale Ceramic Film Boosts High-Frequency Performance

    November 7, 2025

    Electrified atomic vapor system enables new nanomaterial mixtures

    November 6, 2025

    Ultrasound-responsive Janus patch with mechanical anisotropy, pro-healing, and anti-adhesion properties for abdominal wall defect repair | Journal of Nanobiotechnology

    November 5, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    Data Engineering in the Age of AI – O’Reilly

    November 7, 2025

    Nanoscale Ceramic Film Boosts High-Frequency Performance

    November 7, 2025

    Hackers target massage parlour clients in blackmail scheme

    November 7, 2025

    Turning Security into Profit: Advanced VMware vDefend Opportunities for Cloud Service Providers

    November 7, 2025
    About Us
    About Us

    Welcome To big tee tech hub. Big tee tech hub is a Professional seo tools Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of seo tools, with a focus on dependability and tools. We’re working to turn our passion for seo tools into a booming online website. We hope you enjoy our seo tools as much as we enjoy offering them to you.

    Don't Miss!

    Data Engineering in the Age of AI – O’Reilly

    November 7, 2025

    Nanoscale Ceramic Film Boosts High-Frequency Performance

    November 7, 2025

    Subscribe to Updates

    Get the latest technology news from Bigteetechhub about IT, Cybersecurity and Big Data.

      • About Us
      • Contact Us
      • Disclaimer
      • Privacy Policy
      • Terms and Conditions
      © 2025 bigteetechhub.All Right Reserved

      Type above and press Enter to search. Press Esc to cancel.